A Simple Machine Learning-Based Quantitative Structure–Activity Relationship Model for Predicting pIC<sub>50</sub> Inhibition Values of FLT3 Tyrosine Kinase

<b>Background/Objectives:</b> Acute myeloid leukemia (AML) presents significant therapeutic challenges, particularly in cases driven by mutations in the FLT3 tyrosine kinase. This study aimed to develop a robust and user-friendly machine learning-based quantitative structure–activity rel...

Full description

Saved in:
Bibliographic Details
Main Authors: Jackson J. Alcázar, Ignacio Sánchez, Cristian Merino, Bruno Monasterio, Gaspar Sajuria, Diego Miranda, Felipe Díaz, Paola R. Campodónico
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Pharmaceuticals
Subjects:
Online Access:https://www.mdpi.com/1424-8247/18/1/96
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832587714208202752
author Jackson J. Alcázar
Ignacio Sánchez
Cristian Merino
Bruno Monasterio
Gaspar Sajuria
Diego Miranda
Felipe Díaz
Paola R. Campodónico
author_facet Jackson J. Alcázar
Ignacio Sánchez
Cristian Merino
Bruno Monasterio
Gaspar Sajuria
Diego Miranda
Felipe Díaz
Paola R. Campodónico
author_sort Jackson J. Alcázar
collection DOAJ
description <b>Background/Objectives:</b> Acute myeloid leukemia (AML) presents significant therapeutic challenges, particularly in cases driven by mutations in the FLT3 tyrosine kinase. This study aimed to develop a robust and user-friendly machine learning-based quantitative structure–activity relationship (QSAR) model to predict the inhibitory potency (pIC<sub>50</sub> values) of FLT3 inhibitors, addressing the limitations of previous models in dataset size, diversity, and predictive accuracy. <b>Methods:</b> Using a dataset which was 14 times larger than those employed in prior studies (1350 compounds with 1269 molecular descriptors), we trained a random forest regressor, chosen due to its superior predictive performance and resistance to overfitting. Rigorous internal validation via leave-one-out and 10-fold cross-validation yielded <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="normal">Q</mi><mn>2</mn></msup></semantics></math></inline-formula> values of 0.926 and 0.922, respectively, while external validation on 270 independent compounds resulted in an R<sup>2</sup> value of 0.941 with a standard deviation of 0.237. <b>Results:</b> Key molecular descriptors influencing the inhibitor potency were identified, thereby improving the interpretability of structural requirements. Additionally, a user-friendly computational tool was developed to enable rapid prediction of pIC<sub>50</sub> values and facilitate ligand-based virtual screening, leading to the identification of promising FLT3 inhibitors. <b>Conclusions:</b> These results represent a significant advancement in the field of FLT3 inhibitor discovery, offering a reliable, practical, and efficient approach for early-stage drug development, potentially accelerating the creation of targeted therapies for AML.
format Article
id doaj-art-6dc81ab53e824c16be8f60f3b12575d6
institution Kabale University
issn 1424-8247
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Pharmaceuticals
spelling doaj-art-6dc81ab53e824c16be8f60f3b12575d62025-01-24T13:45:22ZengMDPI AGPharmaceuticals1424-82472025-01-011819610.3390/ph18010096A Simple Machine Learning-Based Quantitative Structure–Activity Relationship Model for Predicting pIC<sub>50</sub> Inhibition Values of FLT3 Tyrosine KinaseJackson J. Alcázar0Ignacio Sánchez1Cristian Merino2Bruno Monasterio3Gaspar Sajuria4Diego Miranda5Felipe Díaz6Paola R. Campodónico7Centro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, ChileCentro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, ChileCentro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, ChileCentro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, ChileCentro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, ChileCentro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, ChileCentro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, ChileCentro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile<b>Background/Objectives:</b> Acute myeloid leukemia (AML) presents significant therapeutic challenges, particularly in cases driven by mutations in the FLT3 tyrosine kinase. This study aimed to develop a robust and user-friendly machine learning-based quantitative structure–activity relationship (QSAR) model to predict the inhibitory potency (pIC<sub>50</sub> values) of FLT3 inhibitors, addressing the limitations of previous models in dataset size, diversity, and predictive accuracy. <b>Methods:</b> Using a dataset which was 14 times larger than those employed in prior studies (1350 compounds with 1269 molecular descriptors), we trained a random forest regressor, chosen due to its superior predictive performance and resistance to overfitting. Rigorous internal validation via leave-one-out and 10-fold cross-validation yielded <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="normal">Q</mi><mn>2</mn></msup></semantics></math></inline-formula> values of 0.926 and 0.922, respectively, while external validation on 270 independent compounds resulted in an R<sup>2</sup> value of 0.941 with a standard deviation of 0.237. <b>Results:</b> Key molecular descriptors influencing the inhibitor potency were identified, thereby improving the interpretability of structural requirements. Additionally, a user-friendly computational tool was developed to enable rapid prediction of pIC<sub>50</sub> values and facilitate ligand-based virtual screening, leading to the identification of promising FLT3 inhibitors. <b>Conclusions:</b> These results represent a significant advancement in the field of FLT3 inhibitor discovery, offering a reliable, practical, and efficient approach for early-stage drug development, potentially accelerating the creation of targeted therapies for AML.https://www.mdpi.com/1424-8247/18/1/96FLT3 inhibitorsligand-based drug designcomputer-aided drug designQSAR modelingAML treatment
spellingShingle Jackson J. Alcázar
Ignacio Sánchez
Cristian Merino
Bruno Monasterio
Gaspar Sajuria
Diego Miranda
Felipe Díaz
Paola R. Campodónico
A Simple Machine Learning-Based Quantitative Structure–Activity Relationship Model for Predicting pIC<sub>50</sub> Inhibition Values of FLT3 Tyrosine Kinase
Pharmaceuticals
FLT3 inhibitors
ligand-based drug design
computer-aided drug design
QSAR modeling
AML treatment
title A Simple Machine Learning-Based Quantitative Structure–Activity Relationship Model for Predicting pIC<sub>50</sub> Inhibition Values of FLT3 Tyrosine Kinase
title_full A Simple Machine Learning-Based Quantitative Structure–Activity Relationship Model for Predicting pIC<sub>50</sub> Inhibition Values of FLT3 Tyrosine Kinase
title_fullStr A Simple Machine Learning-Based Quantitative Structure–Activity Relationship Model for Predicting pIC<sub>50</sub> Inhibition Values of FLT3 Tyrosine Kinase
title_full_unstemmed A Simple Machine Learning-Based Quantitative Structure–Activity Relationship Model for Predicting pIC<sub>50</sub> Inhibition Values of FLT3 Tyrosine Kinase
title_short A Simple Machine Learning-Based Quantitative Structure–Activity Relationship Model for Predicting pIC<sub>50</sub> Inhibition Values of FLT3 Tyrosine Kinase
title_sort simple machine learning based quantitative structure activity relationship model for predicting pic sub 50 sub inhibition values of flt3 tyrosine kinase
topic FLT3 inhibitors
ligand-based drug design
computer-aided drug design
QSAR modeling
AML treatment
url https://www.mdpi.com/1424-8247/18/1/96
work_keys_str_mv AT jacksonjalcazar asimplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase
AT ignaciosanchez asimplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase
AT cristianmerino asimplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase
AT brunomonasterio asimplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase
AT gasparsajuria asimplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase
AT diegomiranda asimplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase
AT felipediaz asimplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase
AT paolarcampodonico asimplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase
AT jacksonjalcazar simplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase
AT ignaciosanchez simplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase
AT cristianmerino simplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase
AT brunomonasterio simplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase
AT gasparsajuria simplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase
AT diegomiranda simplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase
AT felipediaz simplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase
AT paolarcampodonico simplemachinelearningbasedquantitativestructureactivityrelationshipmodelforpredictingpicsub50subinhibitionvaluesofflt3tyrosinekinase