Diagnostic Performance of Artificial Intelligence–Based Methods for Tuberculosis Detection: Systematic Review
BackgroundTuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various arti...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
JMIR Publications
2025-03-01
|
| Series: | Journal of Medical Internet Research |
| Online Access: | https://www.jmir.org/2025/1/e69068 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | BackgroundTuberculosis (TB) remains a significant health concern, contributing to the highest mortality among infectious diseases worldwide. However, none of the various TB diagnostic tools introduced is deemed sufficient on its own for the diagnostic pathway, so various artificial intelligence (AI)–based methods have been developed to address this issue.
ObjectiveWe aimed to provide a comprehensive evaluation of AI-based algorithms for TB detection across various data modalities.
MethodsFollowing PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) 2020 guidelines, we conducted a systematic review to synthesize current knowledge on this topic. Our search across 3 major databases (Scopus, PubMed, Association for Computing Machinery [ACM] Digital Library) yielded 1146 records, of which we included 152 (13.3%) studies in our analysis. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies version 2) was performed for the risk-of-bias assessment of all included studies.
ResultsRadiographic biomarkers (n=129, 84.9%) and deep learning (DL; n=122, 80.3%) approaches were predominantly used, with convolutional neural networks (CNNs) using Visual Geometry Group (VGG)-16 (n=37, 24.3%), ResNet-50 (n=33, 21.7%), and DenseNet-121 (n=19, 12.5%) architectures being the most common DL approach. The majority of studies focused on model development (n=143, 94.1%) and used a single modality approach (n=141, 92.8%). AI methods demonstrated good performance in all studies: mean accuracy=91.93% (SD 8.10%, 95% CI 90.52%-93.33%; median 93.59%, IQR 88.33%-98.32%), mean area under the curve (AUC)=93.48% (SD 7.51%, 95% CI 91.90%-95.06%; median 95.28%, IQR 91%-99%), mean sensitivity=92.77% (SD 7.48%, 95% CI 91.38%-94.15%; median 94.05% IQR 89%-98.87%), and mean specificity=92.39% (SD 9.4%, 95% CI 90.30%-94.49%; median 95.38%, IQR 89.42%-99.19%). AI performance across different biomarker types showed mean accuracies of 92.45% (SD 7.83%), 89.03% (SD 8.49%), and 84.21% (SD 0%); mean AUCs of 94.47% (SD 7.32%), 88.45% (SD 8.33%), and 88.61% (SD 5.9%); mean sensitivities of 93.8% (SD 6.27%), 88.41% (SD 10.24%), and 93% (SD 0%); and mean specificities of 94.2% (SD 6.63%), 85.89% (SD 14.66%), and 95% (SD 0%) for radiographic, molecular/biochemical, and physiological types, respectively. AI performance across various reference standards showed mean accuracies of 91.44% (SD 7.3%), 93.16% (SD 6.44%), and 88.98% (SD 9.77%); mean AUCs of 90.95% (SD 7.58%), 94.89% (SD 5.18%), and 92.61% (SD 6.01%); mean sensitivities of 91.76% (SD 7.02%), 93.73% (SD 6.67%), and 91.34% (SD 7.71%); and mean specificities of 86.56% (SD 12.8%), 93.69% (SD 8.45%), and 92.7% (SD 6.54%) for bacteriological, human reader, and combined reference standards, respectively. The transfer learning (TL) approach showed increasing popularity (n=89, 58.6%). Notably, only 1 (0.7%) study conducted domain-shift analysis for TB detection.
ConclusionsFindings from this review underscore the considerable promise of AI-based methods in the realm of TB detection. Future research endeavors should prioritize conducting domain-shift analyses to better simulate real-world scenarios in TB detection.
Trial RegistrationPROSPERO CRD42023453611; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023453611 |
|---|---|
| ISSN: | 1438-8871 |