Optimization of approximate integrals of rapidly oscillating functions in the Hilbert space

In this work, we construct an optimal quadrature formula in the sense of Sard based on a functional approach for numerical calculation of integrals of rapidly oscillating functions. To solve this problem, we will use Sobolev’s method.To do this, we first solve the boundary value problem for an extre...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdullo Hayotov, Samandar Babaev, Abdimumin Kurbonnazarov
Format: Article
Language:English
Published: Elsevier 2025-05-01
Series:Results in Applied Mathematics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590037425000330
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849765638959005696
author Abdullo Hayotov
Samandar Babaev
Abdimumin Kurbonnazarov
author_facet Abdullo Hayotov
Samandar Babaev
Abdimumin Kurbonnazarov
author_sort Abdullo Hayotov
collection DOAJ
description In this work, we construct an optimal quadrature formula in the sense of Sard based on a functional approach for numerical calculation of integrals of rapidly oscillating functions. To solve this problem, we will use Sobolev’s method.To do this, we first solve the boundary value problem for an extremal function. To solve the boundary value problem, we use direct and inverse Fourier transforms and find the fundamental solution of the given differential operator. Using the extremal function, we find the norm of the error functional. For the given nodes, we find the minimum value of the error functional norm along the coefficients.This quadrature formula is exact for the hyperbolic functions sinh(x),cosh(x) and a constant term. In this work, we consider the case ωh∉Z and ω∈R in the Hilbert space K2(3)(0,1).We apply the constructed quadrature formula for reconstruction of a Computed Tomography image.
format Article
id doaj-art-6d81717df0b54c39a280c42c94ccd7c4
institution DOAJ
issn 2590-0374
language English
publishDate 2025-05-01
publisher Elsevier
record_format Article
series Results in Applied Mathematics
spelling doaj-art-6d81717df0b54c39a280c42c94ccd7c42025-08-20T03:04:47ZengElsevierResults in Applied Mathematics2590-03742025-05-012610056910.1016/j.rinam.2025.100569Optimization of approximate integrals of rapidly oscillating functions in the Hilbert spaceAbdullo Hayotov0Samandar Babaev1Abdimumin Kurbonnazarov2V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, 9, University str., Tashkent, 100174, Uzbekistan; Central Asian University, 264, Milliy bog str., Barkamol MFY, M.Ulugbek district, Tashkent, 111221, Uzbekistan; Tashkent International University, 7, Kichik khalka yoli str., Tashkent, 100084, Uzbekistan; Bukhara State University, 11, M.Ikbol str., Bukhara, 200114, UzbekistanV.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, 9, University str., Tashkent, 100174, Uzbekistan; Tashkent International University, 7, Kichik khalka yoli str., Tashkent, 100084, Uzbekistan; Bukhara State University, 11, M.Ikbol str., Bukhara, 200114, Uzbekistan; Corresponding author at: V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, 9, University str., Tashkent, 100174, Uzbekistan.V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, 9, University str., Tashkent, 100174, Uzbekistan; Termiz State University, 43, Barkamol Avlod str., Termiz, 190111, Uzbekistan; Tashkent State Technical University, 2A, University str., Tashkent, 100095, UzbekistanIn this work, we construct an optimal quadrature formula in the sense of Sard based on a functional approach for numerical calculation of integrals of rapidly oscillating functions. To solve this problem, we will use Sobolev’s method.To do this, we first solve the boundary value problem for an extremal function. To solve the boundary value problem, we use direct and inverse Fourier transforms and find the fundamental solution of the given differential operator. Using the extremal function, we find the norm of the error functional. For the given nodes, we find the minimum value of the error functional norm along the coefficients.This quadrature formula is exact for the hyperbolic functions sinh(x),cosh(x) and a constant term. In this work, we consider the case ωh∉Z and ω∈R in the Hilbert space K2(3)(0,1).We apply the constructed quadrature formula for reconstruction of a Computed Tomography image.http://www.sciencedirect.com/science/article/pii/S2590037425000330Quadrature formulaFourier coefficientsError functionalExtremal functionRapidly oscillation integral
spellingShingle Abdullo Hayotov
Samandar Babaev
Abdimumin Kurbonnazarov
Optimization of approximate integrals of rapidly oscillating functions in the Hilbert space
Results in Applied Mathematics
Quadrature formula
Fourier coefficients
Error functional
Extremal function
Rapidly oscillation integral
title Optimization of approximate integrals of rapidly oscillating functions in the Hilbert space
title_full Optimization of approximate integrals of rapidly oscillating functions in the Hilbert space
title_fullStr Optimization of approximate integrals of rapidly oscillating functions in the Hilbert space
title_full_unstemmed Optimization of approximate integrals of rapidly oscillating functions in the Hilbert space
title_short Optimization of approximate integrals of rapidly oscillating functions in the Hilbert space
title_sort optimization of approximate integrals of rapidly oscillating functions in the hilbert space
topic Quadrature formula
Fourier coefficients
Error functional
Extremal function
Rapidly oscillation integral
url http://www.sciencedirect.com/science/article/pii/S2590037425000330
work_keys_str_mv AT abdullohayotov optimizationofapproximateintegralsofrapidlyoscillatingfunctionsinthehilbertspace
AT samandarbabaev optimizationofapproximateintegralsofrapidlyoscillatingfunctionsinthehilbertspace
AT abdimuminkurbonnazarov optimizationofapproximateintegralsofrapidlyoscillatingfunctionsinthehilbertspace