Ultrahigh dielectric permittivity in Hf0.5Zr0.5O2 thin-film capacitors
Abstract The ever-shrinking electrostatic capacitor, which is capable of storing substantial quantities of electrical charge, has found widespread applications in high-storage-density dynamic random access memory and energy-efficient complementary metal-oxide-semiconductor devices. Despite the high...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-03-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-57963-8 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract The ever-shrinking electrostatic capacitor, which is capable of storing substantial quantities of electrical charge, has found widespread applications in high-storage-density dynamic random access memory and energy-efficient complementary metal-oxide-semiconductor devices. Despite the high energy storage densities (133–152 J/cm3) and efficiencies (75–90%) that have been realized using relaxor ferroelectric thick films, low-permittivity interfacial layers in the ultrathin films have caused the overall permittivity to be one to two orders of magnitude lower than expected. However, innovative use of complementary metal-oxide-semiconductor-compatible HfO2-based materials with high permittivities (~52) could enable integration of these capacitors into few-nanometre-scale devices. This study reports an ultrahigh dielectric permittivity of 921, stored charge density of 349 μC/cm2, and energy density of 584 J/cm3 with nearly 100% efficiency within near-edge plasma-treated Hf0.5Zr0.5O2 thin-film capacitors when the Hf-based material’s ferroelectricity disappears suddenly after polarization fatigue. The ultrahigh dielectric permittivity originates from a distorted orthorhombic phase with ordered oxygen vacancies that enables high-density integration of extremely scaled logic and memory devices for low-voltage applications. |
|---|---|
| ISSN: | 2041-1723 |