Unraveling electronic correlations in warm dense quantum plasmas

Abstract The study of matter at extreme densities and temperatures has emerged as a highly active frontier at the interface of plasma physics, material science and quantum chemistry with relevance for planetary modeling and inertial confinement fusion. A particular feature of such warm dense matter...

Full description

Saved in:
Bibliographic Details
Main Authors: Tobias Dornheim, Tilo Döppner, Panagiotis Tolias, Maximilian P. Böhme, Luke B. Fletcher, Thomas Gawne, Frank R. Graziani, Dominik Kraus, Michael J. MacDonald, Zhandos A. Moldabekov, Sebastian Schwalbe, Dirk O. Gericke, Jan Vorberger
Format: Article
Language:English
Published: Nature Portfolio 2025-06-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-60278-3
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850225793757609984
author Tobias Dornheim
Tilo Döppner
Panagiotis Tolias
Maximilian P. Böhme
Luke B. Fletcher
Thomas Gawne
Frank R. Graziani
Dominik Kraus
Michael J. MacDonald
Zhandos A. Moldabekov
Sebastian Schwalbe
Dirk O. Gericke
Jan Vorberger
author_facet Tobias Dornheim
Tilo Döppner
Panagiotis Tolias
Maximilian P. Böhme
Luke B. Fletcher
Thomas Gawne
Frank R. Graziani
Dominik Kraus
Michael J. MacDonald
Zhandos A. Moldabekov
Sebastian Schwalbe
Dirk O. Gericke
Jan Vorberger
author_sort Tobias Dornheim
collection DOAJ
description Abstract The study of matter at extreme densities and temperatures has emerged as a highly active frontier at the interface of plasma physics, material science and quantum chemistry with relevance for planetary modeling and inertial confinement fusion. A particular feature of such warm dense matter is the complex interplay of Coulomb interactions, quantum effects, and thermal excitations, making its rigorous theoretical description challenging. Here, we demonstrate how ab initio path integral Monte Carlo simulations allow us to unravel this intricate interplay for the example of strongly compressed beryllium, focusing on two X-ray Thomson scattering data sets obtained at the National Ignition Facility. We find excellent agreement between simulation and experiment with a very high level of consistency between independent observations without the need for any empirical input parameters. Our results call into question previously used chemical models, with important implications for the interpretation of scattering experiments and radiation hydrodynamics simulations.
format Article
id doaj-art-6d71001cd4c847c38751edcc80db97cc
institution OA Journals
issn 2041-1723
language English
publishDate 2025-06-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-6d71001cd4c847c38751edcc80db97cc2025-08-20T02:05:14ZengNature PortfolioNature Communications2041-17232025-06-0116111110.1038/s41467-025-60278-3Unraveling electronic correlations in warm dense quantum plasmasTobias Dornheim0Tilo Döppner1Panagiotis Tolias2Maximilian P. Böhme3Luke B. Fletcher4Thomas Gawne5Frank R. Graziani6Dominik Kraus7Michael J. MacDonald8Zhandos A. Moldabekov9Sebastian Schwalbe10Dirk O. Gericke11Jan Vorberger12Center for Advanced Systems Understanding (CASUS)Lawrence Livermore National LaboratorySpace and Plasma Physics, Royal Institute of Technology (KTH)Center for Advanced Systems Understanding (CASUS)SLAC National Accelerator LaboratoryCenter for Advanced Systems Understanding (CASUS)Lawrence Livermore National LaboratoryHelmholtz-Zentrum Dresden-Rossendorf (HZDR)Lawrence Livermore National LaboratoryCenter for Advanced Systems Understanding (CASUS)Center for Advanced Systems Understanding (CASUS)Centre for Fusion, Space and Astrophysics, Department of Physics, University of WarwickHelmholtz-Zentrum Dresden-Rossendorf (HZDR)Abstract The study of matter at extreme densities and temperatures has emerged as a highly active frontier at the interface of plasma physics, material science and quantum chemistry with relevance for planetary modeling and inertial confinement fusion. A particular feature of such warm dense matter is the complex interplay of Coulomb interactions, quantum effects, and thermal excitations, making its rigorous theoretical description challenging. Here, we demonstrate how ab initio path integral Monte Carlo simulations allow us to unravel this intricate interplay for the example of strongly compressed beryllium, focusing on two X-ray Thomson scattering data sets obtained at the National Ignition Facility. We find excellent agreement between simulation and experiment with a very high level of consistency between independent observations without the need for any empirical input parameters. Our results call into question previously used chemical models, with important implications for the interpretation of scattering experiments and radiation hydrodynamics simulations.https://doi.org/10.1038/s41467-025-60278-3
spellingShingle Tobias Dornheim
Tilo Döppner
Panagiotis Tolias
Maximilian P. Böhme
Luke B. Fletcher
Thomas Gawne
Frank R. Graziani
Dominik Kraus
Michael J. MacDonald
Zhandos A. Moldabekov
Sebastian Schwalbe
Dirk O. Gericke
Jan Vorberger
Unraveling electronic correlations in warm dense quantum plasmas
Nature Communications
title Unraveling electronic correlations in warm dense quantum plasmas
title_full Unraveling electronic correlations in warm dense quantum plasmas
title_fullStr Unraveling electronic correlations in warm dense quantum plasmas
title_full_unstemmed Unraveling electronic correlations in warm dense quantum plasmas
title_short Unraveling electronic correlations in warm dense quantum plasmas
title_sort unraveling electronic correlations in warm dense quantum plasmas
url https://doi.org/10.1038/s41467-025-60278-3
work_keys_str_mv AT tobiasdornheim unravelingelectroniccorrelationsinwarmdensequantumplasmas
AT tilodoppner unravelingelectroniccorrelationsinwarmdensequantumplasmas
AT panagiotistolias unravelingelectroniccorrelationsinwarmdensequantumplasmas
AT maximilianpbohme unravelingelectroniccorrelationsinwarmdensequantumplasmas
AT lukebfletcher unravelingelectroniccorrelationsinwarmdensequantumplasmas
AT thomasgawne unravelingelectroniccorrelationsinwarmdensequantumplasmas
AT frankrgraziani unravelingelectroniccorrelationsinwarmdensequantumplasmas
AT dominikkraus unravelingelectroniccorrelationsinwarmdensequantumplasmas
AT michaeljmacdonald unravelingelectroniccorrelationsinwarmdensequantumplasmas
AT zhandosamoldabekov unravelingelectroniccorrelationsinwarmdensequantumplasmas
AT sebastianschwalbe unravelingelectroniccorrelationsinwarmdensequantumplasmas
AT dirkogericke unravelingelectroniccorrelationsinwarmdensequantumplasmas
AT janvorberger unravelingelectroniccorrelationsinwarmdensequantumplasmas