Unraveling electronic correlations in warm dense quantum plasmas
Abstract The study of matter at extreme densities and temperatures has emerged as a highly active frontier at the interface of plasma physics, material science and quantum chemistry with relevance for planetary modeling and inertial confinement fusion. A particular feature of such warm dense matter...
Saved in:
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-06-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-60278-3 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850225793757609984 |
|---|---|
| author | Tobias Dornheim Tilo Döppner Panagiotis Tolias Maximilian P. Böhme Luke B. Fletcher Thomas Gawne Frank R. Graziani Dominik Kraus Michael J. MacDonald Zhandos A. Moldabekov Sebastian Schwalbe Dirk O. Gericke Jan Vorberger |
| author_facet | Tobias Dornheim Tilo Döppner Panagiotis Tolias Maximilian P. Böhme Luke B. Fletcher Thomas Gawne Frank R. Graziani Dominik Kraus Michael J. MacDonald Zhandos A. Moldabekov Sebastian Schwalbe Dirk O. Gericke Jan Vorberger |
| author_sort | Tobias Dornheim |
| collection | DOAJ |
| description | Abstract The study of matter at extreme densities and temperatures has emerged as a highly active frontier at the interface of plasma physics, material science and quantum chemistry with relevance for planetary modeling and inertial confinement fusion. A particular feature of such warm dense matter is the complex interplay of Coulomb interactions, quantum effects, and thermal excitations, making its rigorous theoretical description challenging. Here, we demonstrate how ab initio path integral Monte Carlo simulations allow us to unravel this intricate interplay for the example of strongly compressed beryllium, focusing on two X-ray Thomson scattering data sets obtained at the National Ignition Facility. We find excellent agreement between simulation and experiment with a very high level of consistency between independent observations without the need for any empirical input parameters. Our results call into question previously used chemical models, with important implications for the interpretation of scattering experiments and radiation hydrodynamics simulations. |
| format | Article |
| id | doaj-art-6d71001cd4c847c38751edcc80db97cc |
| institution | OA Journals |
| issn | 2041-1723 |
| language | English |
| publishDate | 2025-06-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Nature Communications |
| spelling | doaj-art-6d71001cd4c847c38751edcc80db97cc2025-08-20T02:05:14ZengNature PortfolioNature Communications2041-17232025-06-0116111110.1038/s41467-025-60278-3Unraveling electronic correlations in warm dense quantum plasmasTobias Dornheim0Tilo Döppner1Panagiotis Tolias2Maximilian P. Böhme3Luke B. Fletcher4Thomas Gawne5Frank R. Graziani6Dominik Kraus7Michael J. MacDonald8Zhandos A. Moldabekov9Sebastian Schwalbe10Dirk O. Gericke11Jan Vorberger12Center for Advanced Systems Understanding (CASUS)Lawrence Livermore National LaboratorySpace and Plasma Physics, Royal Institute of Technology (KTH)Center for Advanced Systems Understanding (CASUS)SLAC National Accelerator LaboratoryCenter for Advanced Systems Understanding (CASUS)Lawrence Livermore National LaboratoryHelmholtz-Zentrum Dresden-Rossendorf (HZDR)Lawrence Livermore National LaboratoryCenter for Advanced Systems Understanding (CASUS)Center for Advanced Systems Understanding (CASUS)Centre for Fusion, Space and Astrophysics, Department of Physics, University of WarwickHelmholtz-Zentrum Dresden-Rossendorf (HZDR)Abstract The study of matter at extreme densities and temperatures has emerged as a highly active frontier at the interface of plasma physics, material science and quantum chemistry with relevance for planetary modeling and inertial confinement fusion. A particular feature of such warm dense matter is the complex interplay of Coulomb interactions, quantum effects, and thermal excitations, making its rigorous theoretical description challenging. Here, we demonstrate how ab initio path integral Monte Carlo simulations allow us to unravel this intricate interplay for the example of strongly compressed beryllium, focusing on two X-ray Thomson scattering data sets obtained at the National Ignition Facility. We find excellent agreement between simulation and experiment with a very high level of consistency between independent observations without the need for any empirical input parameters. Our results call into question previously used chemical models, with important implications for the interpretation of scattering experiments and radiation hydrodynamics simulations.https://doi.org/10.1038/s41467-025-60278-3 |
| spellingShingle | Tobias Dornheim Tilo Döppner Panagiotis Tolias Maximilian P. Böhme Luke B. Fletcher Thomas Gawne Frank R. Graziani Dominik Kraus Michael J. MacDonald Zhandos A. Moldabekov Sebastian Schwalbe Dirk O. Gericke Jan Vorberger Unraveling electronic correlations in warm dense quantum plasmas Nature Communications |
| title | Unraveling electronic correlations in warm dense quantum plasmas |
| title_full | Unraveling electronic correlations in warm dense quantum plasmas |
| title_fullStr | Unraveling electronic correlations in warm dense quantum plasmas |
| title_full_unstemmed | Unraveling electronic correlations in warm dense quantum plasmas |
| title_short | Unraveling electronic correlations in warm dense quantum plasmas |
| title_sort | unraveling electronic correlations in warm dense quantum plasmas |
| url | https://doi.org/10.1038/s41467-025-60278-3 |
| work_keys_str_mv | AT tobiasdornheim unravelingelectroniccorrelationsinwarmdensequantumplasmas AT tilodoppner unravelingelectroniccorrelationsinwarmdensequantumplasmas AT panagiotistolias unravelingelectroniccorrelationsinwarmdensequantumplasmas AT maximilianpbohme unravelingelectroniccorrelationsinwarmdensequantumplasmas AT lukebfletcher unravelingelectroniccorrelationsinwarmdensequantumplasmas AT thomasgawne unravelingelectroniccorrelationsinwarmdensequantumplasmas AT frankrgraziani unravelingelectroniccorrelationsinwarmdensequantumplasmas AT dominikkraus unravelingelectroniccorrelationsinwarmdensequantumplasmas AT michaeljmacdonald unravelingelectroniccorrelationsinwarmdensequantumplasmas AT zhandosamoldabekov unravelingelectroniccorrelationsinwarmdensequantumplasmas AT sebastianschwalbe unravelingelectroniccorrelationsinwarmdensequantumplasmas AT dirkogericke unravelingelectroniccorrelationsinwarmdensequantumplasmas AT janvorberger unravelingelectroniccorrelationsinwarmdensequantumplasmas |