Proposal of a vertically polarized superconducting multipole wiggler using Nb3Sn coils
We propose a vertically polarized superconducting multipole wiggler (V-SC-MPW) that enables the use of vertically polarized hard X-rays with minimal impact on beam quality. Vertical polarization facilitates unique experimental setups by allowing horizontal arrangement of optical equipment, which is...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
International Union of Crystallography
2025-07-01
|
| Series: | Journal of Synchrotron Radiation |
| Subjects: | |
| Online Access: | https://journals.iucr.org/paper?S1600577525004382 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We propose a vertically polarized superconducting multipole wiggler (V-SC-MPW) that enables the use of vertically polarized hard X-rays with minimal impact on beam quality. Vertical polarization facilitates unique experimental setups by allowing horizontal arrangement of optical equipment, which is difficult to realize with horizontally polarized X-rays. However, significant emittance growth has prevented the adoption of such vertically polarized, high-field devices in third-generation light sources. To address this challenge, the V-SC-MPW employs a short-period design. By utilizing Nb3Sn superconducting wires, which have a critical current density approximately 10 times higher than that of conventional NbTi, the period length can be shortened while maintaining the required magnetic field, thereby reducing the beam orbit amplitude and the resulting emittance growth. A case study that considers the introduction of the V-SC-MPW into PF-HLS, a future light source planned at KEK, shows that, with a horizontal magnetic gap of 30 mm, a design featuring a peak magnetic field of 2.44 T, a period length of 85 mm and an orbit amplitude of 54 µm at a beam energy of 2.5 GeV is feasible. This seven-period V-SC-MPW, assumed to be installed in a non-achromatic straight section of PF-HLS, is estimated to result in emittance growths of 15.6 pm rad horizontally and 1.0 pm rad vertically. These minimal impacts indicate that the short-period V-SC-MPW is a promising insertion device for utilizing vertically polarized hard X-rays in modern low-emittance rings with intermediate beam energies. |
|---|---|
| ISSN: | 1600-5775 |