Finite-Horizon Robust Kalman Filter for Uncertain Attitude Estimation System with Star Sensor Measurement Delays
This paper addresses the robust Kalman filtering problem for uncertain attitude estimation system with star sensor measurement delays. Combined with the misalignment errors and scale factor errors of gyros in the process model and the misalignment errors of star sensors in the measurement model, the...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/494060 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832549097407512576 |
---|---|
author | Hua-Ming Qian Wei Huang Biao Liu |
author_facet | Hua-Ming Qian Wei Huang Biao Liu |
author_sort | Hua-Ming Qian |
collection | DOAJ |
description | This paper addresses the robust Kalman filtering problem for uncertain attitude estimation system with star sensor measurement delays. Combined with the misalignment errors and scale factor errors of gyros in the process model and the misalignment errors of star sensors in the measurement model, the uncertain attitude estimation model can be established, which indicates that uncertainties not only appear in the state and output matrices but also affect the statistic of the process noise. Meanwhile, the phenomenon of star sensor measurement delays is described by introducing Bernoulli random variables with different delay characteristics. The aim of the addressed attitude estimation problem is to design a filter such that, in the presence of model uncertainties and star sensors delays for the attitude estimation system, the optimized filter parameters can be obtained to minimize the upper bound on the estimation error covariance. Therefore, a finite-horizon robust Kalman filter is proposed to cope with this question. Compared with traditional attitude estimation algorithms, the designed robust filter takes into account the effects of star sensor measurement delays and model uncertainties. Simulation results illustrate the effectiveness of the developed robust filter. |
format | Article |
id | doaj-art-6d447c02c80f45deb2d2ac98d5656305 |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2014-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-6d447c02c80f45deb2d2ac98d56563052025-02-03T06:12:17ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/494060494060Finite-Horizon Robust Kalman Filter for Uncertain Attitude Estimation System with Star Sensor Measurement DelaysHua-Ming Qian0Wei Huang1Biao Liu2College of Automation, Harbin Engineering University, Harbin 150001, ChinaCollege of Automation, Harbin Engineering University, Harbin 150001, ChinaDongguan Techtotop Microelectronics Co., Ltd., Chengdu R & D Branch, Chengdu 610041, ChinaThis paper addresses the robust Kalman filtering problem for uncertain attitude estimation system with star sensor measurement delays. Combined with the misalignment errors and scale factor errors of gyros in the process model and the misalignment errors of star sensors in the measurement model, the uncertain attitude estimation model can be established, which indicates that uncertainties not only appear in the state and output matrices but also affect the statistic of the process noise. Meanwhile, the phenomenon of star sensor measurement delays is described by introducing Bernoulli random variables with different delay characteristics. The aim of the addressed attitude estimation problem is to design a filter such that, in the presence of model uncertainties and star sensors delays for the attitude estimation system, the optimized filter parameters can be obtained to minimize the upper bound on the estimation error covariance. Therefore, a finite-horizon robust Kalman filter is proposed to cope with this question. Compared with traditional attitude estimation algorithms, the designed robust filter takes into account the effects of star sensor measurement delays and model uncertainties. Simulation results illustrate the effectiveness of the developed robust filter.http://dx.doi.org/10.1155/2014/494060 |
spellingShingle | Hua-Ming Qian Wei Huang Biao Liu Finite-Horizon Robust Kalman Filter for Uncertain Attitude Estimation System with Star Sensor Measurement Delays Abstract and Applied Analysis |
title | Finite-Horizon Robust Kalman Filter for Uncertain Attitude Estimation System with Star Sensor Measurement Delays |
title_full | Finite-Horizon Robust Kalman Filter for Uncertain Attitude Estimation System with Star Sensor Measurement Delays |
title_fullStr | Finite-Horizon Robust Kalman Filter for Uncertain Attitude Estimation System with Star Sensor Measurement Delays |
title_full_unstemmed | Finite-Horizon Robust Kalman Filter for Uncertain Attitude Estimation System with Star Sensor Measurement Delays |
title_short | Finite-Horizon Robust Kalman Filter for Uncertain Attitude Estimation System with Star Sensor Measurement Delays |
title_sort | finite horizon robust kalman filter for uncertain attitude estimation system with star sensor measurement delays |
url | http://dx.doi.org/10.1155/2014/494060 |
work_keys_str_mv | AT huamingqian finitehorizonrobustkalmanfilterforuncertainattitudeestimationsystemwithstarsensormeasurementdelays AT weihuang finitehorizonrobustkalmanfilterforuncertainattitudeestimationsystemwithstarsensormeasurementdelays AT biaoliu finitehorizonrobustkalmanfilterforuncertainattitudeestimationsystemwithstarsensormeasurementdelays |