Identification of Common Bean Genotypes Tolerant to the Combined Stress of Terminal Drought and High Temperature

The yield of common bean (<i>Phaseolus vulgaris</i> L.) is limited by abiotic stresses such as drought and high temperatures, which frequently occur simultaneously under field conditions. This study examined 100 bean genotypes under three environmental conditions, namely, the rainy seaso...

Full description

Saved in:
Bibliographic Details
Main Authors: Alejandro Antonio Prado-García, Jorge Alberto Acosta-Gallegos, Víctor Montero-Tavera, Ricardo Yáñez-López, Juan Gabriel Ramírez-Pimentel, Cesar Leobardo Aguirre-Mancilla
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/15/7/1624
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The yield of common bean (<i>Phaseolus vulgaris</i> L.) is limited by abiotic stresses such as drought and high temperatures, which frequently occur simultaneously under field conditions. This study examined 100 bean genotypes under three environmental conditions, namely, the rainy season (optimal conditions), full irrigation in the dry season (high-temperature stress), and terminal drought in the dry season (combined stress), via a 10 × 10 triple-lattice design. Agronomic parameters evaluated included days to flowering (DF), days to physiological maturity (DM), plant height (PH), aerial biomass (BIO), grain yield (YLD), and 100-seed weight (100SW). The natural temperature exceeded 35 °C during the reproductive stage of the dry season. Combined stress revealed differential adaptive mechanisms in the tested germplasms, indicating that the response to multiple stresses is more complex than the sum of individual stress responses. The average yield under optimal conditions was 1344 kg/ha, decreasing to 889 kg/ha (66.1%) under irrigation with high temperatures and to 317 kg/ha (23.6%) under terminal drought with high temperatures. Under terminal drought with high temperatures, the number of days to maturity decreased by 5%, and the seed weight decreased by 20%. The G69-33-PT and G-19158 genotypes presented high yields under high-temperature stress, with yields above 1800 kg/ha, suggesting specific physiological mechanisms for tolerance to elevated temperatures. Under combined stress, genotypes G69-Sel25, Pinto Mestizo, and Dalia presented yields above 680 kg/ha, indicating adaptations in terms of water use efficiency and tolerance to high temperature. The identification of genotypes with differential stress tolerance provides valuable genetic resources for breeding programs. The diverse origins of superior germplasms (bred lines, landraces, and commercial cultivars) highlight the importance of exploring various germplasms in the search for sources of abiotic stress tolerance for breeding projects aimed at developing cultivars adapted to climate change scenarios where drought and high temperatures occur simultaneously.
ISSN:2073-4395