Some remarks on gradient estimates for heat kernels

<p>This paper is concerned with pointwise estimates for the gradient of the heat kernel <mml:math alttext="$K_t$"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:math>, <mml:math alttext="$t>0$&q...

Full description

Saved in:
Bibliographic Details
Format: Article
Language:English
Published: Wiley 2006-01-01
Series:Abstract and Applied Analysis
Online Access:http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/73020
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850157816267931648
collection DOAJ
description <p>This paper is concerned with pointwise estimates for the gradient of the heat kernel <mml:math alttext="$K_t$"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:math>, <mml:math alttext="$t>0$"> <mml:mi>t</mml:mi><mml:mo>&#x003E;</mml:mo><mml:mn>0</mml:mn> </mml:math>, of the Laplace operator on a Riemannian manifold <mml:math alttext="$M$"> <mml:mi>M</mml:mi> </mml:math>. Under standard assumptions on <mml:math alttext="$M$"> <mml:mi>M</mml:mi> </mml:math>, we show that <mml:math alttext="$ abla K_t$"> <mml:mo>&#x2207;</mml:mo><mml:msub> <mml:mi>K</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:math> satisfies Gaussian bounds if and only if it satisfies certain uniform estimates or estimates in <mml:math alttext="$L^p$"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math> for some <mml:math alttext="$1leq pleq infty$"> <mml:mn>1</mml:mn><mml:mo>&#x2264;</mml:mo><mml:mi>p</mml:mi><mml:mo>&#x2264;</mml:mo><mml:mi>&#x221E;</mml:mi> </mml:math>. The proof is based on finite speed propagation for the wave equation, and extends to a more general setting. We also prove that Gaussian bounds on <mml:math alttext="$ abla K_t$"> <mml:mo>&#x2207;</mml:mo><mml:msub> <mml:mi>K</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:math> are stable under surjective, submersive mappings between manifolds which preserve the Laplacians. As applications, we obtain gradient estimates on covering manifolds and on homogeneous spaces of Lie groups of polynomial growth and boundedness of Riesz transform operators.</p>
format Article
id doaj-art-6d0288d6abf747c69d03a67805f7b3c1
institution OA Journals
issn 1085-3375
language English
publishDate 2006-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-6d0288d6abf747c69d03a67805f7b3c12025-08-20T02:24:03ZengWileyAbstract and Applied Analysis1085-33752006-01-012006Some remarks on gradient estimates for heat kernels<p>This paper is concerned with pointwise estimates for the gradient of the heat kernel <mml:math alttext="$K_t$"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:math>, <mml:math alttext="$t>0$"> <mml:mi>t</mml:mi><mml:mo>&#x003E;</mml:mo><mml:mn>0</mml:mn> </mml:math>, of the Laplace operator on a Riemannian manifold <mml:math alttext="$M$"> <mml:mi>M</mml:mi> </mml:math>. Under standard assumptions on <mml:math alttext="$M$"> <mml:mi>M</mml:mi> </mml:math>, we show that <mml:math alttext="$ abla K_t$"> <mml:mo>&#x2207;</mml:mo><mml:msub> <mml:mi>K</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:math> satisfies Gaussian bounds if and only if it satisfies certain uniform estimates or estimates in <mml:math alttext="$L^p$"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:math> for some <mml:math alttext="$1leq pleq infty$"> <mml:mn>1</mml:mn><mml:mo>&#x2264;</mml:mo><mml:mi>p</mml:mi><mml:mo>&#x2264;</mml:mo><mml:mi>&#x221E;</mml:mi> </mml:math>. The proof is based on finite speed propagation for the wave equation, and extends to a more general setting. We also prove that Gaussian bounds on <mml:math alttext="$ abla K_t$"> <mml:mo>&#x2207;</mml:mo><mml:msub> <mml:mi>K</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:math> are stable under surjective, submersive mappings between manifolds which preserve the Laplacians. As applications, we obtain gradient estimates on covering manifolds and on homogeneous spaces of Lie groups of polynomial growth and boundedness of Riesz transform operators.</p>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/73020
spellingShingle Some remarks on gradient estimates for heat kernels
Abstract and Applied Analysis
title Some remarks on gradient estimates for heat kernels
title_full Some remarks on gradient estimates for heat kernels
title_fullStr Some remarks on gradient estimates for heat kernels
title_full_unstemmed Some remarks on gradient estimates for heat kernels
title_short Some remarks on gradient estimates for heat kernels
title_sort some remarks on gradient estimates for heat kernels
url http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/73020