Exploration of Unsupervised Deep Learning-Based Gear Fault Detection for Wind Turbine Gearboxes
Gearboxes are critical mechanical components in various modern constructions, including wind turbines, making their real-time monitoring and the prevention of major failures essential. Machine learning (ML) offers a precise and robust method for early-stage failure detection and efficient gear monit...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/14/3630 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Gearboxes are critical mechanical components in various modern constructions, including wind turbines, making their real-time monitoring and the prevention of major failures essential. Machine learning (ML) offers a precise and robust method for early-stage failure detection and efficient gear monitoring during operation, with computational efficiency that allows for use on edge devices. This article presents a method for detecting surface damage on gear teeth using unsupervised machine learning. Using only experimentally measured vibrational signals from a healthy gearbox as a training set, novel neural network architectures, including convolutional and recurrent autoencoders, were employed and compared with a classical dense autoencoder. The study confirmed the effectiveness of these methods in gear transmission diagnostics and demonstrated the potential for achieving high-quality classification metrics using unsupervised learning. |
|---|---|
| ISSN: | 1996-1073 |