Efficient Inorganic Stabilization Materials for Chromium and Arsenic Pollution in Water and Soil
Chromium and arsenic, as prevalent heavy metal contaminants in water environments, pose significant threats to ecological systems and public health, necessitating urgent remediation measures. Conventional remediation techniques face challenges including high costs, prolonged remediation cycles, limi...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/13/7069 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Chromium and arsenic, as prevalent heavy metal contaminants in water environments, pose significant threats to ecological systems and public health, necessitating urgent remediation measures. Conventional remediation techniques face challenges including high costs, prolonged remediation cycles, limited durability, and secondary contamination risks. While stabilization materials have emerged as promising solutions, the complex stabilization mechanisms for chromium and arsenic remain diverse and have not yet been fully elucidated. With reference to previous research, this paper systematically reviews inorganic stabilization materials for chromium and arsenic contamination remediation, with particular emphasis on elucidating their stabilization mechanisms and influencing factors. This review extensively evaluates various material types to inform practical applications, while highlighting investigations into novel composite materials, which advance technological innovation in water environmental remediation. It offers novel perspectives for addressing chromium and arsenic pollution challenges, potentially driving the development of more sustainable remediation strategies. |
|---|---|
| ISSN: | 2076-3417 |