Experimental Study on Efficient Short Electric Arc Turning of Titanium Alloy

This study investigates a novel short electric arc vertical turning method for machining titanium alloy shafts. The method was successfully applied to titanium alloy rods, and its effects on material removal rate (MRR), surface roughness, roundness, and cross-sectional morphology were analyzed at va...

Full description

Saved in:
Bibliographic Details
Main Authors: Guoyu Hu, Haotian Jiao, Wei Gao, Junfeng Zhang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/15/2/122
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates a novel short electric arc vertical turning method for machining titanium alloy shafts. The method was successfully applied to titanium alloy rods, and its effects on material removal rate (MRR), surface roughness, roundness, and cross-sectional morphology were analyzed at varying processing voltages. The results indicate that the MRR and surface quality improve with increased voltage, reaching a maximum of 231 mm<sup>3</sup>/min and 26 μm surface roughness at 32 V. However, surface roughness deteriorates with higher duty cycles and voltages due to unstable discharges. Roundness deviations are minimized with higher rotational speeds, which enhance uniform material removal and arc stability. Metallographic analysis revealed an increased heat-affected zone and recast layer thickness at higher voltages. This method demonstrates high machining efficiency and improved surface quality, making it suitable for titanium alloy shaft manufacturing in advanced engineering applications.
ISSN:2075-4701