SDA-YOLO: An Object Detection Method for Peach Fruits in Complex Orchard Environments

To address the challenges of leaf–branch occlusion, fruit mutual occlusion, complex background interference, and scale variations in peach detection within complex orchard environments, this study proposes an improved YOLOv11n-based peach detection method named SDA-YOLO. First, in the backbone netwo...

Full description

Saved in:
Bibliographic Details
Main Authors: Xudong Lin, Dehao Liao, Zhiguo Du, Bin Wen, Zhihui Wu, Xianzhi Tu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/14/4457
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To address the challenges of leaf–branch occlusion, fruit mutual occlusion, complex background interference, and scale variations in peach detection within complex orchard environments, this study proposes an improved YOLOv11n-based peach detection method named SDA-YOLO. First, in the backbone network, the LSKA module is embedded into the SPPF module to construct an SPPF-LSKA fusion module, enhancing multi-scale feature representation for peach targets. Second, an MPDIoU-based bounding box regression loss function replaces CIoU to improve localization accuracy for overlapping and occluded peaches. The DyHead Block is integrated into the detection head to form a DMDetect module, strengthening feature discrimination for small and occluded targets in complex backgrounds. To address insufficient feature fusion flexibility caused by scale variations from occlusion and illumination differences in multi-scale peach detection, a novel Adaptive Multi-Scale Fusion Pyramid (AMFP) module is proposed to enhance the neck network, improving flexibility in processing complex features. Experimental results demonstrate that SDA-YOLO achieves precision (P), recall (R), mAP@0.95, and mAP@0.5:0.95 of 90.8%, 85.4%, 90%, and 62.7%, respectively, surpassing YOLOv11n by 2.7%, 4.8%, 2.7%, and 7.2%. This verifies the method’s robustness in complex orchard environments and provides effective technical support for intelligent fruit harvesting and yield estimation.
ISSN:1424-8220