The Influence of Ventilation Conditions on LPG Leak Dispersion in a Commercial Kitchen
With the extensive use of liquefied petroleum gas (LPG) in the catering industry, leakage explosions have become frequent. This study employs numerical simulations to investigate the diffusion patterns of LPG leakage under various ventilation conditions. The results show that there is a logarithmic...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/11/2678 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | With the extensive use of liquefied petroleum gas (LPG) in the catering industry, leakage explosions have become frequent. This study employs numerical simulations to investigate the diffusion patterns of LPG leakage under various ventilation conditions. The results show that there is a logarithmic relationship between the wind speed and the volume of a propane gas cloud under natural ventilation. In the wind speed ranges of 1.5 to 3.3 m/s and 7.9 to 10.7 m/s, a small increase in wind speed leads to a significant reduction in gas cloud volume (97.2% and 95.05%, respectively). Under forced ventilation, the volume of the gas cloud decreases by 90.6%, from 6.67 m<sup>3</sup> at higher air exchange rates (22.1 and 24.3 times/h), reducing explosion risks. When leakage occurs at the stove, the optimal combination for dispersing the propane combustible gas cloud is window opening at position 1 and fan at position a. The volume of the gas cloud at window position 1 increases exponentially with the distance between the fan and the leak source. The fan is installed within 2.786 m from the leak source to ensure that the gas cloud volume remains below 0.5 m<sup>3</sup>. These findings provide valuable insights for the design and the optimization of ventilation systems and layouts in commercial kitchens. |
|---|---|
| ISSN: | 1996-1073 |