Towards combining self-organizing maps (SOM) and convolutional neural network (CNN) for improving model accuracy: Application to malaria vectors phenotypic resistance
This study introduces a hybrid approach that combines unsupervised self-organizing maps (SOM) with a supervised convolutional neural network (CNN) to enhance model accuracy in vector-borne disease modeling. We applied this method to predict insecticide resistance (IR) status in key malaria vectors a...
Saved in:
| Main Authors: | Komi Mensah Agboka, Elfatih M. Abdel-Rahman, Daisy Salifu, Brian Kanji, Frank T. Ndjomatchoua, Ritter A.Y. Guimapi, Sunday Ekesi, Landmann Tobias |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-06-01
|
| Series: | MethodsX |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2215016125000469 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
When thermal risk indices work and when they don’t: A case study of two maize insect pests
by: Komi Mensah Agboka, et al.
Published: (2025-12-01) -
Bærekraft som styringsteknologi: absurde konsekvenser av korrekt kalkulering
by: Jens Røyrvik, et al.
Published: (2024-08-01) -
Genome-Wide Identification and Characterization of the mTERF Gene Family in Spinach and the Role of <i>SomTERF5</i> in Response to Heat Stress
by: Ziyue Sun, et al.
Published: (2025-05-01) -
Recognition of Eudiscoaster and Heliodiscoaster using SOM Neural Network
by: Raid AL-Nima
Published: (2010-12-01) -
“Teksten bryder frem”: tekst-som-begivenhed i danskfaget
by: Thomas Heiden, et al.
Published: (2024-12-01)