Parting gravity’s tail: quadrupole tails at fifth order and beyond via integer partitions

Abstract This work studies the systematic organization of higher-order gravitational quadrupole tails using generalized unitarity methods imported from the study of scattering amplitudes. The first major result is a constructive algorithm for generic arbitrary-order tail effective actions which link...

Full description

Saved in:
Bibliographic Details
Main Author: Alex Edison
Format: Article
Language:English
Published: SpringerOpen 2025-02-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP02(2025)016
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This work studies the systematic organization of higher-order gravitational quadrupole tails using generalized unitarity methods imported from the study of scattering amplitudes. The first major result is a constructive algorithm for generic arbitrary-order tail effective actions which links the structure of their loop integral basis expansion with integer partitions, and predicts that only a single new unitarity cut needs to be evaluated at each tail order with all other contributions given in terms of lower-loop data. The algorithm is employed to compute the tail-of-tail-of-tail-of-tail-of-tail (T5) contributions to the effective action and associated energy loss to gravitational waves. Validation of the new effective action and radiated energy is done through counterterm extraction and renormalization analysis, leading to complete agreement with known counterterms and renormalization flow equations.
ISSN:1029-8479