Synthetic Computed Tomography generation using deep-learning for female pelvic radiotherapy planning

Synthetic Computed Tomography (sCT) is required to provide electron density information for MR-only radiotherapy. Deep-learning (DL) methods for sCT generation show improved dose congruence over other sCT generation methods (e.g. bulk density). Using 30 female pelvis datasets to train a cycleGAN-ins...

Full description

Saved in:
Bibliographic Details
Main Authors: Rachael Tulip, Sebastian Andersson, Robert Chuter, Spyros Manolopoulos
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:Physics and Imaging in Radiation Oncology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405631625000247
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synthetic Computed Tomography (sCT) is required to provide electron density information for MR-only radiotherapy. Deep-learning (DL) methods for sCT generation show improved dose congruence over other sCT generation methods (e.g. bulk density). Using 30 female pelvis datasets to train a cycleGAN-inspired DL model, this study found mean dose differences between a deformed planning CT (dCT) and sCT were 0.2 % (D98 %). Three Dimensional Gamma analysis showed a mean of 90.4 % at 1 %/1mm. This study showed accurate sCTs (dose) can be generated from routinely available T2 spin echo sequences without the need for additional specialist sequences.
ISSN:2405-6316