Molecular Models for the Core Components of the Flagellar Type-III Secretion Complex.

We show that by using a combination of computational methods, consistent three-dimensional molecular models can be proposed for the core proteins of the type-III secretion system. We employed a variety of approaches to reconcile disparate, and sometimes inconsistent, data sources into a coherent pic...

Full description

Saved in:
Bibliographic Details
Main Authors: William R Taylor, Teige R S Matthews-Palmer, Morgan Beeby
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164047&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show that by using a combination of computational methods, consistent three-dimensional molecular models can be proposed for the core proteins of the type-III secretion system. We employed a variety of approaches to reconcile disparate, and sometimes inconsistent, data sources into a coherent picture that for most of the proteins indicated a unique solution to the constraints. The range of difficulty spanned from the trivial (FliQ) to the difficult (FlhA and FliP). The uncertainties encountered with FlhA were largely the result of the greater number of helix packing possibilities allowed in a large protein, however, for FliP, there remains an uncertainty in how to reconcile the large displacement predicted between its two main helical hairpins and their ability to sit together happily across the bacterial membrane. As there is still no high resolution structural information on any of these proteins, we hope our predicted models may be of some use in aiding the interpretation of electron microscope images and in rationalising mutation data and experiments.
ISSN:1932-6203