Generalized Ambiguity Function for Bistatic FDA Radar Joint Velocity, Range, and Angle Parameters
The bistatic frequency diverse array (FDA) radar system is designed to exploit the beam autoscanning of FDA radar, providing a novel solution to address spatial synchronization challenges in bistatic radar architecture, unleashing bistatic radar’s advantage in low-observable target detection, main-l...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/10/1784 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The bistatic frequency diverse array (FDA) radar system is designed to exploit the beam autoscanning of FDA radar, providing a novel solution to address spatial synchronization challenges in bistatic radar architecture, unleashing bistatic radar’s advantage in low-observable target detection, main-lobe jamming (MLJ) suppression, etc. To lay the theoretical foundation for subsequent research on bistatic FDA radar systems, this study develops a generalized ambiguity function (GAF) framework, jointly characterizing target velocity, range, and angular parameters, which can provide a reference for transmitted signal optimization and bistatic geometric configuration design. This paper derives the mathematical model of the bistatic FDA radar system’s GAF and validates that its structure not only depends on the transmitted signal but also exhibits strong geometric dependency, where baseline length and target position jointly reshape the bistatic triangle through numerical simulations. |
|---|---|
| ISSN: | 2072-4292 |