Entropy difference-based EEG channel selection technique for automated detection of ADHD.

Attention deficit hyperactivity disorder (ADHD) is one of the common neurodevelopmental disorders in children. This paper presents an automated approach for ADHD detection using the proposed entropy difference (EnD)-based encephalogram (EEG) channel selection approach. In the proposed approach, we s...

Full description

Saved in:
Bibliographic Details
Main Authors: Shishir Maheshwari, Kandala N V P S Rajesh, Vivek Kanhangad, U Rajendra Acharya, T Sunil Kumar
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0319487
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Attention deficit hyperactivity disorder (ADHD) is one of the common neurodevelopmental disorders in children. This paper presents an automated approach for ADHD detection using the proposed entropy difference (EnD)-based encephalogram (EEG) channel selection approach. In the proposed approach, we selected the most significant EEG channels for the accurate identification of ADHD using an EnD-based channel selection approach. Secondly, a set of features is extracted from the selected channels and fed to a classifier. To verify the effectiveness of the channels selected, we explored three sets of features and classifiers. More specifically, we explored discrete wavelet transform (DWT), empirical mode decomposition (EMD) and symmetrically-weighted local binary pattern (SLBP)-based features. To perform automated classification, we have used k-nearest neighbor (k-NN), Ensemble classifier, and support vectors machine (SVM) classifiers. Our proposed approach yielded the highest accuracy of 99.29% using the public database. In addition, the proposed EnD-based channel selection has consistently provided better classification accuracies than the entropy-based channel selection approach. Also, the developed method has outperformed the existing approaches in automated ADHD detection.
ISSN:1932-6203