An EEMD-Based Denoising Method for Seismic Signal of High Arch Dam Combining Wavelet with Singular Spectrum Analysis

Due to complicated noise interference, seismic signals of high arch dam are of nonstationarity and a low signal-to-noise ratio (SNR) during acquisition process. The traditional denoising method may have filtered effective seismic signals of high arch dams. A self-adaptive denoising method based on e...

Full description

Saved in:
Bibliographic Details
Main Authors: Bo Li, Lixin Zhang, Qiling Zhang, Shengmei Yang
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2019/4937595
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to complicated noise interference, seismic signals of high arch dam are of nonstationarity and a low signal-to-noise ratio (SNR) during acquisition process. The traditional denoising method may have filtered effective seismic signals of high arch dams. A self-adaptive denoising method based on ensemble empirical mode decomposition (EEMD) combining wavelet threshold with singular spectrum analysis (SSA) is proposed in this paper. Based on the EEMD result for seismic signals of high arch dams, a continuous mean square error criterion is used to distinguish high-frequency and low-frequency components of the intrinsic mode functions (IMFs). Denoised high-frequency IMF using wavelet threshold is reconstructed with low-frequency components, and SSA is implemented for the reconstructed signal. Simulation signal denoising analysis indicates that the proposed method can significantly reduce mean square error under low SNR condition, and the overall denoising effect is superior to EEMD and EEMD-Wavelet threshold denoising algorithms. Denoising analysis of measured seismic signals of high arch dams shows that the performance of denoised seismic signals using EEMD-Wavelet-SSA is obviously improved, and natural frequencies of the high arch dams can be effectively identified.
ISSN:1070-9622
1875-9203