iPAR: A framework for modelling and inferring information about disease spread when the populations at risk are unknown.
We introduce the inference for populations at risk (iPAR) framework which enables modelling and estimation of spatial disease dynamics in scenarios where the population at risk is unknown or poorly mapped. This framework addresses a gap in spatial infectious disease modelling approaches, with curren...
Saved in:
| Main Authors: | Stephen Catterall, Thibaud Porphyre, Glenn Marion |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2025-06-01
|
| Series: | PLoS Computational Biology |
| Online Access: | https://doi.org/10.1371/journal.pcbi.1012622 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Emakume militanteak literaturan: euskal eta Ipar Irlandako gatazken arteko zubiak eraikitzen
by: Lorea Azpeitia Anta
Published: (2025-06-01) -
Vállalati szabályozás és társadalmi feljebb lépés a félperiférián: a magyarországi ruházati ipar esete
by: Emese Dobos
Published: (2025-06-01) -
Blurred Image Restoration with Unknown Point Spread Function
by: ghada sabah karam
Published: (2018-10-01) -
About Extracting Dynamic Information of Unknown Complex Systems by Neural Networks
by: Eloy Irigoyen, et al.
Published: (2018-01-01) -
Knowns and unknowns about the neurobiology of stuttering.
by: Nicole E Neef, et al.
Published: (2024-02-01)