Fractal functions of exponential type that is generated by the $\mathbf{Q_2^*}$-representation of argument
We consider function $f$ which is depended on the parameters $0<a\in R$, $q_{0n}\in (0;1)$, $n\in N$ and convergent positive series $v_1+v_2+...+v_n+...$, defined by equality $f(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=a^{\varphi(x)}$, where $\alpha_n\in \{0,1\}$, $\varphi(x=\Delta^{Q_2...
Saved in:
| Main Authors: | M.V. Pratsovytyi, Ya. V. Goncharenko, I. M. Lysenko, S.P. Ratushniak |
|---|---|
| Format: | Article |
| Language: | deu |
| Published: |
Ivan Franko National University of Lviv
2021-12-01
|
| Series: | Математичні Студії |
| Subjects: | |
| Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/275 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Progress on Fractal Dimensions of the Weierstrass Function and Weierstrass-Type Functions
by: Yue Qiu, et al.
Published: (2025-02-01) -
Non-Stationary Fractal Functions on the Sierpiński Gasket
by: Anuj Kumar, et al.
Published: (2024-11-01) -
The dimension of the boundary of the Lévy Dragon
by: P. Duvall, et al.
Published: (1997-01-01) -
Continued $\mathbf{A_2}$-fractions and singular functions
by: M.V. Pratsiovytyi, et al.
Published: (2022-10-01) -
Fractal Continuum Maxwell Creep Model
by: Andriy Kryvko, et al.
Published: (2025-01-01)