Fractal functions of exponential type that is generated by the $\mathbf{Q_2^*}$-representation of argument

We consider function $f$ which is depended on the parameters $0<a\in R$, $q_{0n}\in (0;1)$, $n\in N$ and convergent positive series $v_1+v_2+...+v_n+...$, defined by equality $f(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=a^{\varphi(x)}$, where $\alpha_n\in \{0,1\}$, $\varphi(x=\Delta^{Q_2...

Full description

Saved in:
Bibliographic Details
Main Authors: M.V. Pratsovytyi, Ya. V. Goncharenko, I. M. Lysenko, S.P. Ratushniak
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2021-12-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/275
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849416392990785536
author M.V. Pratsovytyi
Ya. V. Goncharenko
I. M. Lysenko
S.P. Ratushniak
author_facet M.V. Pratsovytyi
Ya. V. Goncharenko
I. M. Lysenko
S.P. Ratushniak
author_sort M.V. Pratsovytyi
collection DOAJ
description We consider function $f$ which is depended on the parameters $0<a\in R$, $q_{0n}\in (0;1)$, $n\in N$ and convergent positive series $v_1+v_2+...+v_n+...$, defined by equality $f(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=a^{\varphi(x)}$, where $\alpha_n\in \{0,1\}$, $\varphi(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=\alpha_1v_1+...+\alpha_nv_n+...$, $q_{1n}=1-q_{0n}$, $\Delta^{Q_2^*}_{\alpha_1...\alpha_n...}=\alpha_1q_{1-\alpha_1,1}+ \sum\limits_{n=2}^{\infty}\big(\alpha_nq_{1-\alpha_n,n}\prod\limits_{i=1}^{n-1}q_{\alpha_i,i}\big)$. In the paper we study structural, variational, integral, differential and fractal properties of the function $f$.
format Article
id doaj-art-6b2093afbf06480eb809b8a93727fa8c
institution Kabale University
issn 1027-4634
2411-0620
language deu
publishDate 2021-12-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-6b2093afbf06480eb809b8a93727fa8c2025-08-20T03:33:11ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342411-06202021-12-0156213314310.30970/ms.56.2.133-143275Fractal functions of exponential type that is generated by the $\mathbf{Q_2^*}$-representation of argumentM.V. Pratsovytyi0Ya. V. Goncharenko1I. M. Lysenko2S.P. Ratushniak3Kyiv Drahomanov Pedagogical UniversityNational Pedagogical Dragomanov University, Kyiv, UkraineNational Pedagogical Dragomanov University, Kyiv, UkraineInstitute of Mathematics, National Academy of Science of UkraineWe consider function $f$ which is depended on the parameters $0<a\in R$, $q_{0n}\in (0;1)$, $n\in N$ and convergent positive series $v_1+v_2+...+v_n+...$, defined by equality $f(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=a^{\varphi(x)}$, where $\alpha_n\in \{0,1\}$, $\varphi(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=\alpha_1v_1+...+\alpha_nv_n+...$, $q_{1n}=1-q_{0n}$, $\Delta^{Q_2^*}_{\alpha_1...\alpha_n...}=\alpha_1q_{1-\alpha_1,1}+ \sum\limits_{n=2}^{\infty}\big(\alpha_nq_{1-\alpha_n,n}\prod\limits_{i=1}^{n-1}q_{\alpha_i,i}\big)$. In the paper we study structural, variational, integral, differential and fractal properties of the function $f$.http://matstud.org.ua/ojs/index.php/matstud/article/view/275two-symbol q2 -representation of numbers of unit segment; function with fractal properties; si- ngular function; hausdorff-besicovith dimension; a set of incomplete sums of row.
spellingShingle M.V. Pratsovytyi
Ya. V. Goncharenko
I. M. Lysenko
S.P. Ratushniak
Fractal functions of exponential type that is generated by the $\mathbf{Q_2^*}$-representation of argument
Математичні Студії
two-symbol q2 -representation of numbers of unit segment; function with fractal properties; si- ngular function; hausdorff-besicovith dimension; a set of incomplete sums of row.
title Fractal functions of exponential type that is generated by the $\mathbf{Q_2^*}$-representation of argument
title_full Fractal functions of exponential type that is generated by the $\mathbf{Q_2^*}$-representation of argument
title_fullStr Fractal functions of exponential type that is generated by the $\mathbf{Q_2^*}$-representation of argument
title_full_unstemmed Fractal functions of exponential type that is generated by the $\mathbf{Q_2^*}$-representation of argument
title_short Fractal functions of exponential type that is generated by the $\mathbf{Q_2^*}$-representation of argument
title_sort fractal functions of exponential type that is generated by the mathbf q 2 representation of argument
topic two-symbol q2 -representation of numbers of unit segment; function with fractal properties; si- ngular function; hausdorff-besicovith dimension; a set of incomplete sums of row.
url http://matstud.org.ua/ojs/index.php/matstud/article/view/275
work_keys_str_mv AT mvpratsovytyi fractalfunctionsofexponentialtypethatisgeneratedbythemathbfq2representationofargument
AT yavgoncharenko fractalfunctionsofexponentialtypethatisgeneratedbythemathbfq2representationofargument
AT imlysenko fractalfunctionsofexponentialtypethatisgeneratedbythemathbfq2representationofargument
AT spratushniak fractalfunctionsofexponentialtypethatisgeneratedbythemathbfq2representationofargument