Fractal functions of exponential type that is generated by the $\mathbf{Q_2^*}$-representation of argument

We consider function $f$ which is depended on the parameters $0<a\in R$, $q_{0n}\in (0;1)$, $n\in N$ and convergent positive series $v_1+v_2+...+v_n+...$, defined by equality $f(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=a^{\varphi(x)}$, where $\alpha_n\in \{0,1\}$, $\varphi(x=\Delta^{Q_2...

Full description

Saved in:
Bibliographic Details
Main Authors: M.V. Pratsovytyi, Ya. V. Goncharenko, I. M. Lysenko, S.P. Ratushniak
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2021-12-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/275
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider function $f$ which is depended on the parameters $0<a\in R$, $q_{0n}\in (0;1)$, $n\in N$ and convergent positive series $v_1+v_2+...+v_n+...$, defined by equality $f(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=a^{\varphi(x)}$, where $\alpha_n\in \{0,1\}$, $\varphi(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=\alpha_1v_1+...+\alpha_nv_n+...$, $q_{1n}=1-q_{0n}$, $\Delta^{Q_2^*}_{\alpha_1...\alpha_n...}=\alpha_1q_{1-\alpha_1,1}+ \sum\limits_{n=2}^{\infty}\big(\alpha_nq_{1-\alpha_n,n}\prod\limits_{i=1}^{n-1}q_{\alpha_i,i}\big)$. In the paper we study structural, variational, integral, differential and fractal properties of the function $f$.
ISSN:1027-4634
2411-0620