Fractal functions of exponential type that is generated by the $\mathbf{Q_2^*}$-representation of argument
We consider function $f$ which is depended on the parameters $0<a\in R$, $q_{0n}\in (0;1)$, $n\in N$ and convergent positive series $v_1+v_2+...+v_n+...$, defined by equality $f(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=a^{\varphi(x)}$, where $\alpha_n\in \{0,1\}$, $\varphi(x=\Delta^{Q_2...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | deu |
| Published: |
Ivan Franko National University of Lviv
2021-12-01
|
| Series: | Математичні Студії |
| Subjects: | |
| Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/275 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We consider function $f$ which is depended on the parameters $0<a\in R$, $q_{0n}\in (0;1)$, $n\in N$ and convergent positive series $v_1+v_2+...+v_n+...$, defined by equality $f(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=a^{\varphi(x)}$, where $\alpha_n\in \{0,1\}$, $\varphi(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=\alpha_1v_1+...+\alpha_nv_n+...$, $q_{1n}=1-q_{0n}$, $\Delta^{Q_2^*}_{\alpha_1...\alpha_n...}=\alpha_1q_{1-\alpha_1,1}+
\sum\limits_{n=2}^{\infty}\big(\alpha_nq_{1-\alpha_n,n}\prod\limits_{i=1}^{n-1}q_{\alpha_i,i}\big)$.
In the paper we study structural, variational, integral, differential and fractal properties of the function $f$. |
|---|---|
| ISSN: | 1027-4634 2411-0620 |