Optimization of energy acquisition system in smart grid based on artificial intelligence and digital twin technology
Abstract In response to the low operating speed and poor stability of energy harvesting systems in smart grids, an energy harvesting optimization method based on improved convolutional neural networks and digital twin technology is proposed in the experiment. Firstly, a smart grid data transmission...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SpringerOpen
2024-11-01
|
| Series: | Energy Informatics |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s42162-024-00425-0 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1846158171459026944 |
|---|---|
| author | Zhen Jing Qing Wang Zhiru Chen Tong Cao Kun Zhang |
| author_facet | Zhen Jing Qing Wang Zhiru Chen Tong Cao Kun Zhang |
| author_sort | Zhen Jing |
| collection | DOAJ |
| description | Abstract In response to the low operating speed and poor stability of energy harvesting systems in smart grids, an energy harvesting optimization method based on improved convolutional neural networks and digital twin technology is proposed in the experiment. Firstly, a smart grid data transmission framework integrating digital twin technology is proposed. A digital twin mapping method based on time, data, and topology structure is used to realize the digital twin mapping at the device level of power grid. Through data synchronization and interaction between the physical power grid and the digital twin model, the operational efficiency and reliability of the power grid are improved. Then, the classical convolutional neural network and attention mechanism are used to comprehensively analyze the physical topology data in the smart grid energy acquisition system. The improved lightweight target detection model is combined to monitor the equipment status of the smart grid and extract key features. Simultaneously utilizing convolutional attention mechanism to dynamically adjust the feature weights of channels or spaces, completing the preprocessing of energy harvesting data. Finally, combined with energy harvesting and power grid switching system, the process of energy harvesting and power grid operation are optimized together. On the training and validation sets, when the channels exceeded 60, the proposed method achieved a system energy efficiency of 55% during operation. The system energy efficiency of the other three comparative algorithms was all less than 40%. In practical applications, as the energy transfer loss increased to 1.0, the system throughput increased to 50 bits. The electricity needs of different users were met, and the difference between power allocation and optimal power allocation was small, which was very reasonable. This proves that the research has effectively optimized the energy harvesting system in the smart grid, improving the efficiency and reliability of the system in practical applications of the smart grid. At the same time, in the increasingly severe energy problem, this system can further provide technical references for the utilization of renewable energy and help achieve the goal of sustainable energy. |
| format | Article |
| id | doaj-art-6b1bc4d9ef4c4f0f95e3716d9c86d433 |
| institution | Kabale University |
| issn | 2520-8942 |
| language | English |
| publishDate | 2024-11-01 |
| publisher | SpringerOpen |
| record_format | Article |
| series | Energy Informatics |
| spelling | doaj-art-6b1bc4d9ef4c4f0f95e3716d9c86d4332024-11-24T12:45:07ZengSpringerOpenEnergy Informatics2520-89422024-11-017112010.1186/s42162-024-00425-0Optimization of energy acquisition system in smart grid based on artificial intelligence and digital twin technologyZhen Jing0Qing Wang1Zhiru Chen2Tong Cao3Kun Zhang4Marketing Service Center (Metrology Center), State Grid Shandong Electric Power CompanyMarketing Service Center (Metrology Center), State Grid Shandong Electric Power CompanyMarketing Service Center (Metrology Center), State Grid Shandong Electric Power CompanyMarketing Service Center (Metrology Center), State Grid Shandong Electric Power CompanyR&D Center, Shandong Doreen Power Technology Co., LtdAbstract In response to the low operating speed and poor stability of energy harvesting systems in smart grids, an energy harvesting optimization method based on improved convolutional neural networks and digital twin technology is proposed in the experiment. Firstly, a smart grid data transmission framework integrating digital twin technology is proposed. A digital twin mapping method based on time, data, and topology structure is used to realize the digital twin mapping at the device level of power grid. Through data synchronization and interaction between the physical power grid and the digital twin model, the operational efficiency and reliability of the power grid are improved. Then, the classical convolutional neural network and attention mechanism are used to comprehensively analyze the physical topology data in the smart grid energy acquisition system. The improved lightweight target detection model is combined to monitor the equipment status of the smart grid and extract key features. Simultaneously utilizing convolutional attention mechanism to dynamically adjust the feature weights of channels or spaces, completing the preprocessing of energy harvesting data. Finally, combined with energy harvesting and power grid switching system, the process of energy harvesting and power grid operation are optimized together. On the training and validation sets, when the channels exceeded 60, the proposed method achieved a system energy efficiency of 55% during operation. The system energy efficiency of the other three comparative algorithms was all less than 40%. In practical applications, as the energy transfer loss increased to 1.0, the system throughput increased to 50 bits. The electricity needs of different users were met, and the difference between power allocation and optimal power allocation was small, which was very reasonable. This proves that the research has effectively optimized the energy harvesting system in the smart grid, improving the efficiency and reliability of the system in practical applications of the smart grid. At the same time, in the increasingly severe energy problem, this system can further provide technical references for the utilization of renewable energy and help achieve the goal of sustainable energy.https://doi.org/10.1186/s42162-024-00425-0Smart gridConvolutional neural networksDigital twinEnergy harvestingOptimization |
| spellingShingle | Zhen Jing Qing Wang Zhiru Chen Tong Cao Kun Zhang Optimization of energy acquisition system in smart grid based on artificial intelligence and digital twin technology Energy Informatics Smart grid Convolutional neural networks Digital twin Energy harvesting Optimization |
| title | Optimization of energy acquisition system in smart grid based on artificial intelligence and digital twin technology |
| title_full | Optimization of energy acquisition system in smart grid based on artificial intelligence and digital twin technology |
| title_fullStr | Optimization of energy acquisition system in smart grid based on artificial intelligence and digital twin technology |
| title_full_unstemmed | Optimization of energy acquisition system in smart grid based on artificial intelligence and digital twin technology |
| title_short | Optimization of energy acquisition system in smart grid based on artificial intelligence and digital twin technology |
| title_sort | optimization of energy acquisition system in smart grid based on artificial intelligence and digital twin technology |
| topic | Smart grid Convolutional neural networks Digital twin Energy harvesting Optimization |
| url | https://doi.org/10.1186/s42162-024-00425-0 |
| work_keys_str_mv | AT zhenjing optimizationofenergyacquisitionsysteminsmartgridbasedonartificialintelligenceanddigitaltwintechnology AT qingwang optimizationofenergyacquisitionsysteminsmartgridbasedonartificialintelligenceanddigitaltwintechnology AT zhiruchen optimizationofenergyacquisitionsysteminsmartgridbasedonartificialintelligenceanddigitaltwintechnology AT tongcao optimizationofenergyacquisitionsysteminsmartgridbasedonartificialintelligenceanddigitaltwintechnology AT kunzhang optimizationofenergyacquisitionsysteminsmartgridbasedonartificialintelligenceanddigitaltwintechnology |