Plasma-Assisted Decoration of Gold Nanoparticles on Bioinspired Polydopamine Nanospheres as Effective Catalyst for Organic Pollutant Removal
Polydopamine (PDA) is an emerging biomimetic material that stimulates the distinctive physicochemical properties of the blue mussel byssus. In this study, we report a rapid and facile method for the decoration of gold nanoparticles (AuNPs) onto the mussel-inspired polydopamine nanospheres (PDA NSs)...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/10/5280 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Polydopamine (PDA) is an emerging biomimetic material that stimulates the distinctive physicochemical properties of the blue mussel byssus. In this study, we report a rapid and facile method for the decoration of gold nanoparticles (AuNPs) onto the mussel-inspired polydopamine nanospheres (PDA NSs) via cold atmospheric plasma treatment. After 10 min of plasma treatment, AuNPs with a size of 10.3 ± 2.0 nm were formed on the surface of PDA NSs. This reaction was performed without the need for any additional reducing agents, thereby eliminating the use of harsh chemicals during the process. The synthesized AuNP-decorated PDA nanohybrids (PDA-Au) exhibit effective catalytic activity for the decoloration of Rhodamine B, with a pseudo-first-order rate constant of 1.405 min<sup>−1</sup>. The green synthesis approach in this work highlights the potential of plasma-assisted methods for decorating biomimetic materials with metallic nanoparticles for catalytic and environmental applications. |
|---|---|
| ISSN: | 2076-3417 |