Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast.
Epigenetic marks such as histone modifications play roles in various chromosome dynamics in mitosis and meiosis. Methylation of histones H3 at positions K4 and K79 is involved in the initiation of recombination and the recombination checkpoint, respectively, during meiosis in the budding yeast. Set1...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2014-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0096648&type=printable |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850026640503996416 |
|---|---|
| author | Mohammad Bani Ismail Miki Shinohara Akira Shinohara |
| author_facet | Mohammad Bani Ismail Miki Shinohara Akira Shinohara |
| author_sort | Mohammad Bani Ismail |
| collection | DOAJ |
| description | Epigenetic marks such as histone modifications play roles in various chromosome dynamics in mitosis and meiosis. Methylation of histones H3 at positions K4 and K79 is involved in the initiation of recombination and the recombination checkpoint, respectively, during meiosis in the budding yeast. Set1 promotes H3K4 methylation while Dot1 promotes H3K79 methylation. In this study, we carried out detailed analyses of meiosis in mutants of the SET1 and DOT1 genes as well as methylation-defective mutants of histone H3. We confirmed the role of Set1-dependent H3K4 methylation in the formation of double-strand breaks (DSBs) in meiosis for the initiation of meiotic recombination, and we showed the involvement of Dot1 (H3K79 methylation) in DSB formation in the absence of Set1-dependent H3K4 methylation. In addition, we showed that the histone H3K4 methylation-defective mutants are defective in SC elongation, although they seem to have moderate reduction of DSBs. This suggests that high levels of DSBs mediated by histone H3K4 methylation promote SC elongation. |
| format | Article |
| id | doaj-art-6afbafa419b64479b4e84d1c0bac53ca |
| institution | DOAJ |
| issn | 1932-6203 |
| language | English |
| publishDate | 2014-01-01 |
| publisher | Public Library of Science (PLoS) |
| record_format | Article |
| series | PLoS ONE |
| spelling | doaj-art-6afbafa419b64479b4e84d1c0bac53ca2025-08-20T03:00:27ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0195e9664810.1371/journal.pone.0096648Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast.Mohammad Bani IsmailMiki ShinoharaAkira ShinoharaEpigenetic marks such as histone modifications play roles in various chromosome dynamics in mitosis and meiosis. Methylation of histones H3 at positions K4 and K79 is involved in the initiation of recombination and the recombination checkpoint, respectively, during meiosis in the budding yeast. Set1 promotes H3K4 methylation while Dot1 promotes H3K79 methylation. In this study, we carried out detailed analyses of meiosis in mutants of the SET1 and DOT1 genes as well as methylation-defective mutants of histone H3. We confirmed the role of Set1-dependent H3K4 methylation in the formation of double-strand breaks (DSBs) in meiosis for the initiation of meiotic recombination, and we showed the involvement of Dot1 (H3K79 methylation) in DSB formation in the absence of Set1-dependent H3K4 methylation. In addition, we showed that the histone H3K4 methylation-defective mutants are defective in SC elongation, although they seem to have moderate reduction of DSBs. This suggests that high levels of DSBs mediated by histone H3K4 methylation promote SC elongation.https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0096648&type=printable |
| spellingShingle | Mohammad Bani Ismail Miki Shinohara Akira Shinohara Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast. PLoS ONE |
| title | Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast. |
| title_full | Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast. |
| title_fullStr | Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast. |
| title_full_unstemmed | Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast. |
| title_short | Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast. |
| title_sort | dot1 dependent histone h3k79 methylation promotes the formation of meiotic double strand breaks in the absence of histone h3k4 methylation in budding yeast |
| url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0096648&type=printable |
| work_keys_str_mv | AT mohammadbaniismail dot1dependenthistoneh3k79methylationpromotestheformationofmeioticdoublestrandbreaksintheabsenceofhistoneh3k4methylationinbuddingyeast AT mikishinohara dot1dependenthistoneh3k79methylationpromotestheformationofmeioticdoublestrandbreaksintheabsenceofhistoneh3k4methylationinbuddingyeast AT akirashinohara dot1dependenthistoneh3k79methylationpromotestheformationofmeioticdoublestrandbreaksintheabsenceofhistoneh3k4methylationinbuddingyeast |