Handling Missing Value dengan Pendekatan Regresi pada Dataset Akuakultur Berukuran Kecil

Shrimp cultivation is strongly influenced by pond water quality conditions. Farmers must know the appropriate action in regulating water quality that is suitable for shrimp survival. The state of water quality can be understood by measuring pond parameters using various sensors. Installing sensors e...

Full description

Saved in:
Bibliographic Details
Main Authors: Ricky Afiful Maula, Agus Indra Gunawan, Bima Sena Bayu Dewantara, M. Udin Harun Al Rasyid, Setiawardhana Setiawardhana, Ferry Astika Saputra, Junaedi Ispianto
Format: Article
Language:English
Published: Universitas Syiah Kuala 2022-09-01
Series:Jurnal Rekayasa Elektrika
Subjects:
Online Access:https://jurnal.unsyiah.ac.id/JRE/article/view/25903
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850178090824630272
author Ricky Afiful Maula
Agus Indra Gunawan
Bima Sena Bayu Dewantara
M. Udin Harun Al Rasyid
Setiawardhana Setiawardhana
Ferry Astika Saputra
Junaedi Ispianto
author_facet Ricky Afiful Maula
Agus Indra Gunawan
Bima Sena Bayu Dewantara
M. Udin Harun Al Rasyid
Setiawardhana Setiawardhana
Ferry Astika Saputra
Junaedi Ispianto
author_sort Ricky Afiful Maula
collection DOAJ
description Shrimp cultivation is strongly influenced by pond water quality conditions. Farmers must know the appropriate action in regulating water quality that is suitable for shrimp survival. The state of water quality can be understood by measuring pond parameters using various sensors. Installing sensors equipped with artificial intelligence modules to inform water quality conditions is the right action. However, the sensor cannot be separated from errors, so it results in not being able to get data or missing data. In this case, the approach of 5 parameters of pond water quality from 13 available parameters is carried out. This paper proposes a technique to obtain lost data caused by sensor error and looks for the best model. A simple approach can be taken, such as the Handling Missing Value (HMV), which is commonly used, namely the mean, with the K-Nearest Neighbors (KNN) classifier optimized using a grid search. However, the accuracy of this technique is still low, reaching 0.739 at 20-fold cross-validation. Calculations were carried out with other methods to further improve the prediction accuracy. It was found that Linear Regression (LR) can increase accuracy up to 0.757, which outperforms different approaches such as the statistical approach to mean 0.739, mode 0.716, median 0.734, and regression approach KNN 0.742, Lasso 0.751, Passive Aggressive Regressor (PAR) 0.737, Support Vector Regression (SVR) 0.739, Kernel Ridge (KR) 0.731, and Stochastic Gradient Descent (SGD) 0.734.
format Article
id doaj-art-6ae8883daa8a4ca0bbdb05e5e4e09893
institution OA Journals
issn 1412-4785
2252-620X
language English
publishDate 2022-09-01
publisher Universitas Syiah Kuala
record_format Article
series Jurnal Rekayasa Elektrika
spelling doaj-art-6ae8883daa8a4ca0bbdb05e5e4e098932025-08-20T02:18:50ZengUniversitas Syiah KualaJurnal Rekayasa Elektrika1412-47852252-620X2022-09-0118310.17529/jre.v18i3.2590314547Handling Missing Value dengan Pendekatan Regresi pada Dataset Akuakultur Berukuran KecilRicky Afiful Maula0Agus Indra Gunawan1Bima Sena Bayu Dewantara2M. Udin Harun Al Rasyid3Setiawardhana Setiawardhana4Ferry Astika Saputra5Junaedi Ispianto6Politeknik Elektronika Negeri SurabayaPoliteknik Elektronika Negeri SurabayaPoliteknik Elektronika Negeri SurabayaPoliteknik Elektronika Negeri SurabayaPoliteknik Elektronika Negeri SurabayaPoliteknik Elektronika Negeri SurabayaAsosiasi Tambak IntensifShrimp cultivation is strongly influenced by pond water quality conditions. Farmers must know the appropriate action in regulating water quality that is suitable for shrimp survival. The state of water quality can be understood by measuring pond parameters using various sensors. Installing sensors equipped with artificial intelligence modules to inform water quality conditions is the right action. However, the sensor cannot be separated from errors, so it results in not being able to get data or missing data. In this case, the approach of 5 parameters of pond water quality from 13 available parameters is carried out. This paper proposes a technique to obtain lost data caused by sensor error and looks for the best model. A simple approach can be taken, such as the Handling Missing Value (HMV), which is commonly used, namely the mean, with the K-Nearest Neighbors (KNN) classifier optimized using a grid search. However, the accuracy of this technique is still low, reaching 0.739 at 20-fold cross-validation. Calculations were carried out with other methods to further improve the prediction accuracy. It was found that Linear Regression (LR) can increase accuracy up to 0.757, which outperforms different approaches such as the statistical approach to mean 0.739, mode 0.716, median 0.734, and regression approach KNN 0.742, Lasso 0.751, Passive Aggressive Regressor (PAR) 0.737, Support Vector Regression (SVR) 0.739, Kernel Ridge (KR) 0.731, and Stochastic Gradient Descent (SGD) 0.734.https://jurnal.unsyiah.ac.id/JRE/article/view/25903handling missing valueiterative imputationalgoritma regresiakuakultur
spellingShingle Ricky Afiful Maula
Agus Indra Gunawan
Bima Sena Bayu Dewantara
M. Udin Harun Al Rasyid
Setiawardhana Setiawardhana
Ferry Astika Saputra
Junaedi Ispianto
Handling Missing Value dengan Pendekatan Regresi pada Dataset Akuakultur Berukuran Kecil
Jurnal Rekayasa Elektrika
handling missing value
iterative imputation
algoritma regresi
akuakultur
title Handling Missing Value dengan Pendekatan Regresi pada Dataset Akuakultur Berukuran Kecil
title_full Handling Missing Value dengan Pendekatan Regresi pada Dataset Akuakultur Berukuran Kecil
title_fullStr Handling Missing Value dengan Pendekatan Regresi pada Dataset Akuakultur Berukuran Kecil
title_full_unstemmed Handling Missing Value dengan Pendekatan Regresi pada Dataset Akuakultur Berukuran Kecil
title_short Handling Missing Value dengan Pendekatan Regresi pada Dataset Akuakultur Berukuran Kecil
title_sort handling missing value dengan pendekatan regresi pada dataset akuakultur berukuran kecil
topic handling missing value
iterative imputation
algoritma regresi
akuakultur
url https://jurnal.unsyiah.ac.id/JRE/article/view/25903
work_keys_str_mv AT rickyafifulmaula handlingmissingvaluedenganpendekatanregresipadadatasetakuakulturberukurankecil
AT agusindragunawan handlingmissingvaluedenganpendekatanregresipadadatasetakuakulturberukurankecil
AT bimasenabayudewantara handlingmissingvaluedenganpendekatanregresipadadatasetakuakulturberukurankecil
AT mudinharunalrasyid handlingmissingvaluedenganpendekatanregresipadadatasetakuakulturberukurankecil
AT setiawardhanasetiawardhana handlingmissingvaluedenganpendekatanregresipadadatasetakuakulturberukurankecil
AT ferryastikasaputra handlingmissingvaluedenganpendekatanregresipadadatasetakuakulturberukurankecil
AT junaediispianto handlingmissingvaluedenganpendekatanregresipadadatasetakuakulturberukurankecil