DACIA5: a Sentinel-1 and Sentinel-2 dataset for agricultural crop identification applications

Artificial intelligence and data analysis are essential in smart agriculture for enhancing crop productivity and food security. However, progress in this field is often limited by the lack of specialized, error-free labeled datasets. This paper introduces DACIA5, a multispectral image dataset for ag...

Full description

Saved in:
Bibliographic Details
Main Authors: A. Băicoianu, I. C. Plajer, M. Debu, M. Ștefan, M. Ivanovici, C. Florea, A. Cațaron, R. M. Coliban, Ș. Popa, Ș. Oprișescu, A. Racovițeanu, Gh. Olteanu, K. Marandskiy, A. Ghinea, A. Kazak, L. Majercsik, A. Manea, L. Dogar
Format: Article
Language:English
Published: Taylor & Francis Group 2025-06-01
Series:Big Earth Data
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/20964471.2025.2512685
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849332897866055680
author A. Băicoianu
I. C. Plajer
M. Debu
M. Ștefan
M. Ivanovici
C. Florea
A. Cațaron
R. M. Coliban
Ș. Popa
Ș. Oprișescu
A. Racovițeanu
Gh. Olteanu
K. Marandskiy
A. Ghinea
A. Kazak
L. Majercsik
A. Manea
L. Dogar
author_facet A. Băicoianu
I. C. Plajer
M. Debu
M. Ștefan
M. Ivanovici
C. Florea
A. Cațaron
R. M. Coliban
Ș. Popa
Ș. Oprișescu
A. Racovițeanu
Gh. Olteanu
K. Marandskiy
A. Ghinea
A. Kazak
L. Majercsik
A. Manea
L. Dogar
author_sort A. Băicoianu
collection DOAJ
description Artificial intelligence and data analysis are essential in smart agriculture for enhancing crop productivity and food security. However, progress in this field is often limited by the lack of specialized, error-free labeled datasets. This paper introduces DACIA5, a multispectral image dataset for agricultural crop identification, complemented with Sentinel-1 radar data. The dataset consists of 172 Sentinel-2 multispectral images (800 × 450 pixels) and 159 Sentinel-1 radar images, collected over Brașov, Romania, from 2020 to 2024, with precise, in-situ verified labels. Additionally, 6,454 Sentinel-2 and 5,995 Sentinel-1 rectangular patches (32 × 32 pixels) were extracted, exceeding 6 million pixels in total. The cropland parcels considered in our dataset are used for research and are owned and cultivated by the National Institute of Research and Development for Potato and Sugar Beet, ensuring error-free labeling. The labels in our dataset provide detailed information about crop types, offering insights into crop distribution, growth stages, and phenological events. Furthermore, we present a comprehensive dataset analysis and two key use cases: crop identification based on a “past vs. present” approach and early crop identification during the agricultural season.
format Article
id doaj-art-6a46c95490004f8ead683dd2c1735de7
institution Kabale University
issn 2096-4471
2574-5417
language English
publishDate 2025-06-01
publisher Taylor & Francis Group
record_format Article
series Big Earth Data
spelling doaj-art-6a46c95490004f8ead683dd2c1735de72025-08-20T03:46:04ZengTaylor & Francis GroupBig Earth Data2096-44712574-54172025-06-0113210.1080/20964471.2025.2512685DACIA5: a Sentinel-1 and Sentinel-2 dataset for agricultural crop identification applicationsA. Băicoianu0I. C. Plajer1M. Debu2M. Ștefan3M. Ivanovici4C. Florea5A. Cațaron6R. M. Coliban7Ș. Popa8Ș. Oprișescu9A. Racovițeanu10Gh. Olteanu11K. Marandskiy12A. Ghinea13A. Kazak14L. Majercsik15A. Manea16L. Dogar17Department of Mathematics and Informatics, Transilvania University, Brașov, RomaniaDepartment of Mathematics and Informatics, Transilvania University, Brașov, RomaniaDepartment of Mathematics and Informatics, Transilvania University, Brașov, RomaniaNational Institute of Research and Development for Potato and Sugar Beet, Brașov, RomaniaDepartment of Mathematics and Informatics, Transilvania University, Brașov, RomaniaDepartment of Mathematics and Informatics, Transilvania University, Brașov, RomaniaDepartment of Mathematics and Informatics, Transilvania University, Brașov, RomaniaDepartment of Mathematics and Informatics, Transilvania University, Brașov, RomaniaDepartment of Mathematics and Informatics, Transilvania University, Brașov, RomaniaDepartment of Mathematics and Informatics, Transilvania University, Brașov, RomaniaDepartment of Mathematics and Informatics, Transilvania University, Brașov, RomaniaDepartment of Mathematics and Informatics, Transilvania University, Brașov, RomaniaDepartment of Mathematics and Informatics, Transilvania University, Brașov, RomaniaNational Institute of Research and Development for Potato and Sugar Beet, Brașov, RomaniaDepartment of Mathematics and Informatics, Transilvania University, Brașov, RomaniaDepartment of Mathematics and Informatics, Transilvania University, Brașov, RomaniaDepartment of Mathematics and Informatics, Transilvania University, Brașov, RomaniaDepartment of Mathematics and Informatics, Transilvania University, Brașov, RomaniaArtificial intelligence and data analysis are essential in smart agriculture for enhancing crop productivity and food security. However, progress in this field is often limited by the lack of specialized, error-free labeled datasets. This paper introduces DACIA5, a multispectral image dataset for agricultural crop identification, complemented with Sentinel-1 radar data. The dataset consists of 172 Sentinel-2 multispectral images (800 × 450 pixels) and 159 Sentinel-1 radar images, collected over Brașov, Romania, from 2020 to 2024, with precise, in-situ verified labels. Additionally, 6,454 Sentinel-2 and 5,995 Sentinel-1 rectangular patches (32 × 32 pixels) were extracted, exceeding 6 million pixels in total. The cropland parcels considered in our dataset are used for research and are owned and cultivated by the National Institute of Research and Development for Potato and Sugar Beet, ensuring error-free labeling. The labels in our dataset provide detailed information about crop types, offering insights into crop distribution, growth stages, and phenological events. Furthermore, we present a comprehensive dataset analysis and two key use cases: crop identification based on a “past vs. present” approach and early crop identification during the agricultural season.https://www.tandfonline.com/doi/10.1080/20964471.2025.2512685Sentinel-2 dataSentinel-1 datasmart agricultureartificial intelligencecrop identificationearly crop identification
spellingShingle A. Băicoianu
I. C. Plajer
M. Debu
M. Ștefan
M. Ivanovici
C. Florea
A. Cațaron
R. M. Coliban
Ș. Popa
Ș. Oprișescu
A. Racovițeanu
Gh. Olteanu
K. Marandskiy
A. Ghinea
A. Kazak
L. Majercsik
A. Manea
L. Dogar
DACIA5: a Sentinel-1 and Sentinel-2 dataset for agricultural crop identification applications
Big Earth Data
Sentinel-2 data
Sentinel-1 data
smart agriculture
artificial intelligence
crop identification
early crop identification
title DACIA5: a Sentinel-1 and Sentinel-2 dataset for agricultural crop identification applications
title_full DACIA5: a Sentinel-1 and Sentinel-2 dataset for agricultural crop identification applications
title_fullStr DACIA5: a Sentinel-1 and Sentinel-2 dataset for agricultural crop identification applications
title_full_unstemmed DACIA5: a Sentinel-1 and Sentinel-2 dataset for agricultural crop identification applications
title_short DACIA5: a Sentinel-1 and Sentinel-2 dataset for agricultural crop identification applications
title_sort dacia5 a sentinel 1 and sentinel 2 dataset for agricultural crop identification applications
topic Sentinel-2 data
Sentinel-1 data
smart agriculture
artificial intelligence
crop identification
early crop identification
url https://www.tandfonline.com/doi/10.1080/20964471.2025.2512685
work_keys_str_mv AT abaicoianu dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT icplajer dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT mdebu dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT mstefan dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT mivanovici dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT cflorea dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT acataron dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT rmcoliban dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT spopa dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT soprisescu dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT aracoviteanu dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT gholteanu dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT kmarandskiy dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT aghinea dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT akazak dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT lmajercsik dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT amanea dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications
AT ldogar dacia5asentinel1andsentinel2datasetforagriculturalcropidentificationapplications