Ventricular Fibrillation detection using time-frequency and the KNN classifier without parameter extraction

This work describes new techniques to improve VF detection and its separation from Ventricular Tachycarida (VT) and other rhythms. It is based on time-frequency representation of the ECG and its use as input in an automatic classifier (K-nearest neighbours - KNN) without any further signal parameter...

Full description

Saved in:
Bibliographic Details
Main Authors: Azeddine Mjahad, Alfredo Rosado Muñoz, Manuel Bataller Mompeán, Jose V. Francés Víllora, Juan F. Guerrero Martínez
Format: Article
Language:Spanish
Published: Universitat Politècnica de València 2017-12-01
Series:Revista Iberoamericana de Automática e Informática Industrial RIAI
Subjects:
Online Access:https://polipapers.upv.es/index.php/RIAI/article/view/8833
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850058633957605376
author Azeddine Mjahad
Alfredo Rosado Muñoz
Manuel Bataller Mompeán
Jose V. Francés Víllora
Juan F. Guerrero Martínez
author_facet Azeddine Mjahad
Alfredo Rosado Muñoz
Manuel Bataller Mompeán
Jose V. Francés Víllora
Juan F. Guerrero Martínez
author_sort Azeddine Mjahad
collection DOAJ
description This work describes new techniques to improve VF detection and its separation from Ventricular Tachycarida (VT) and other rhythms. It is based on time-frequency representation of the ECG and its use as input in an automatic classifier (K-nearest neighbours - KNN) without any further signal parameter extraction or additional characteristics. For comparison purposes, three time-frequency variants are analysed: pseudo Wigner-Ville representation (RTF), grey-scale image obtained from RTF (IRTF), and reduced image from IRTF (reduced IRTF). Four types of rhythms (classes) are defined: ’Normal’ for sinus rhythm, ’VT’ for ventricular tachycardia, ’VF’ for ventricular fibrillation and ’Others’ for the rest of rhythms. Classification results for VF detection in case of reduced IRTF are 88.27% sensitivity and 98.22% specificity. In case of VT, 88.31% sensitivity and 98.80% specificity is obtained, 98.14% sensitivity and 96.82% specificity for normal rhythms, and 96.91% sensitivity and 99.06% specificity for other rhythms. Finally, results are compared with other authors.
format Article
id doaj-art-6a20b6964bfe46bcbf8fea7d72c50170
institution DOAJ
issn 1697-7912
1697-7920
language Spanish
publishDate 2017-12-01
publisher Universitat Politècnica de València
record_format Article
series Revista Iberoamericana de Automática e Informática Industrial RIAI
spelling doaj-art-6a20b6964bfe46bcbf8fea7d72c501702025-08-20T02:51:06ZspaUniversitat Politècnica de ValènciaRevista Iberoamericana de Automática e Informática Industrial RIAI1697-79121697-79202017-12-0115112413210.4995/riai.2017.88336130Ventricular Fibrillation detection using time-frequency and the KNN classifier without parameter extractionAzeddine Mjahad0Alfredo Rosado Muñoz1Manuel Bataller Mompeán2Jose V. Francés Víllora3Juan F. Guerrero Martínez4Universitat de ValenciaUniversitat de ValenciaUniversitat de ValenciaUniversitat de ValenciaUniversitat de ValenciaThis work describes new techniques to improve VF detection and its separation from Ventricular Tachycarida (VT) and other rhythms. It is based on time-frequency representation of the ECG and its use as input in an automatic classifier (K-nearest neighbours - KNN) without any further signal parameter extraction or additional characteristics. For comparison purposes, three time-frequency variants are analysed: pseudo Wigner-Ville representation (RTF), grey-scale image obtained from RTF (IRTF), and reduced image from IRTF (reduced IRTF). Four types of rhythms (classes) are defined: ’Normal’ for sinus rhythm, ’VT’ for ventricular tachycardia, ’VF’ for ventricular fibrillation and ’Others’ for the rest of rhythms. Classification results for VF detection in case of reduced IRTF are 88.27% sensitivity and 98.22% specificity. In case of VT, 88.31% sensitivity and 98.80% specificity is obtained, 98.14% sensitivity and 96.82% specificity for normal rhythms, and 96.91% sensitivity and 99.06% specificity for other rhythms. Finally, results are compared with other authors.https://polipapers.upv.es/index.php/RIAI/article/view/8833Sistemas biomédicosSeñales ElectrocardiográficasRepresentación tiempo-frecuenciaSeñales no estacionariasAnálisis de imágenesClasificación
spellingShingle Azeddine Mjahad
Alfredo Rosado Muñoz
Manuel Bataller Mompeán
Jose V. Francés Víllora
Juan F. Guerrero Martínez
Ventricular Fibrillation detection using time-frequency and the KNN classifier without parameter extraction
Revista Iberoamericana de Automática e Informática Industrial RIAI
Sistemas biomédicos
Señales Electrocardiográficas
Representación tiempo-frecuencia
Señales no estacionarias
Análisis de imágenes
Clasificación
title Ventricular Fibrillation detection using time-frequency and the KNN classifier without parameter extraction
title_full Ventricular Fibrillation detection using time-frequency and the KNN classifier without parameter extraction
title_fullStr Ventricular Fibrillation detection using time-frequency and the KNN classifier without parameter extraction
title_full_unstemmed Ventricular Fibrillation detection using time-frequency and the KNN classifier without parameter extraction
title_short Ventricular Fibrillation detection using time-frequency and the KNN classifier without parameter extraction
title_sort ventricular fibrillation detection using time frequency and the knn classifier without parameter extraction
topic Sistemas biomédicos
Señales Electrocardiográficas
Representación tiempo-frecuencia
Señales no estacionarias
Análisis de imágenes
Clasificación
url https://polipapers.upv.es/index.php/RIAI/article/view/8833
work_keys_str_mv AT azeddinemjahad ventricularfibrillationdetectionusingtimefrequencyandtheknnclassifierwithoutparameterextraction
AT alfredorosadomunoz ventricularfibrillationdetectionusingtimefrequencyandtheknnclassifierwithoutparameterextraction
AT manuelbatallermompean ventricularfibrillationdetectionusingtimefrequencyandtheknnclassifierwithoutparameterextraction
AT josevfrancesvillora ventricularfibrillationdetectionusingtimefrequencyandtheknnclassifierwithoutparameterextraction
AT juanfguerreromartinez ventricularfibrillationdetectionusingtimefrequencyandtheknnclassifierwithoutparameterextraction