Optimized Digital Watermarking for Robust Information Security in Embedded Systems
With the exponential growth in transactions and exchanges carried out via the Internet, the risks of the falsification and distortion of information are multiplying, encouraged by widespread access to the virtual world. In this context, digital image watermarking has emerged as an essential solution...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Information |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2078-2489/16/4/322 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | With the exponential growth in transactions and exchanges carried out via the Internet, the risks of the falsification and distortion of information are multiplying, encouraged by widespread access to the virtual world. In this context, digital image watermarking has emerged as an essential solution for protecting digital content by enhancing its durability and resistance to manipulation. However, no current digital watermarking technology offers complete protection against all forms of attack, with each method often limited to specific applications. This field has recently benefited from the integration of deep learning techniques, which have brought significant advances in information security. This article explores the implementation of digital watermarking in embedded systems, addressing the challenges posed by resource constraints such as memory, computing power, and energy consumption. We propose optimization techniques, including frequency domain methods and the use of lightweight deep learning models, to enhance the robustness and resilience of embedded systems. The experimental results validate the effectiveness of these approaches for enhanced image protection, opening new prospects for the development of information security technologies adapted to embedded environments. |
|---|---|
| ISSN: | 2078-2489 |