Snow Reconciles Observed and Simulated Phase Partitioning and Increases Cloud Feedback
Abstract The surprising increase of Earth's climate sensitivity in the most recent coupled model intercomparison project (CMIP) models has been largely attributed to extratropical cloud feedback, which is thought to be driven by greater supercooled water in present‐day cloud phase partitioning...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2021-10-01
|
| Series: | Geophysical Research Letters |
| Subjects: | |
| Online Access: | https://doi.org/10.1029/2021GL094876 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract The surprising increase of Earth's climate sensitivity in the most recent coupled model intercomparison project (CMIP) models has been largely attributed to extratropical cloud feedback, which is thought to be driven by greater supercooled water in present‐day cloud phase partitioning (CPP). Here, we report that accounting for precipitation in the Goddard Institute for Space Studies ModelE3 radiation scheme, neglected in more than 60% of CMIP6 and 90% of CMIP5 models, systematically changes its apparent CPP and substantially increases its cloud feedback, consistent with results using CMIP models. Including precipitation in the comparison with cloud–aerosol lidar and infrared pathfinder satellite observations (CALIPSO) measurements and in model radiation schemes is essential to faithfully constrain cloud amount and phase partitioning, and simulate cloud feedbacks. Our findings suggest that making radiation schemes precipitation‐aware (missing in most CMIP6 models) should strengthen their positive cloud feedback and further increase their already high mean climate sensitivity. |
|---|---|
| ISSN: | 0094-8276 1944-8007 |