Some inequalities for entire functions

Let $\mathcal{L}_p$ be the subspace of the space $L_p(\mathbb{R})$ consisting of the restriction to the real axis of all entire functions of exponential type $\le \pi$. In this paper, for any function $f\in \mathcal{L}_p \,\,(1\le p\le \infty)$, we obtain estimates for the norm of $f$ in terms of th...

Full description

Saved in:
Bibliographic Details
Main Authors: N. Sushchyk, D. Lukivska
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2024-09-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/542
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849416151599153152
author N. Sushchyk
D. Lukivska
author_facet N. Sushchyk
D. Lukivska
author_sort N. Sushchyk
collection DOAJ
description Let $\mathcal{L}_p$ be the subspace of the space $L_p(\mathbb{R})$ consisting of the restriction to the real axis of all entire functions of exponential type $\le \pi$. In this paper, for any function $f\in \mathcal{L}_p \,\,(1\le p\le \infty)$, we obtain estimates for the norm of $f$ in terms of the sequence $(f(n/2))_{n\in\mathbb{Z}},$ namely $$ \frac12 \|f\|_{p,1}\le \|f\|_{\mathcal{L}_p}\le 2 \|f\|_{p,1}, $$ where $\|f\|_{p,1}:=\frac12(\|Jf\|_{\ell_p(\mathbb{Z})} +\|JT_{1/2}f\|_{\ell_p(\mathbb{Z})})$. Here $J:\mathcal{L}_p\to\ell_p(\mathbb{Z})$ is the linear operator given by the formula $$ (Jf)(n):=(-1)^nf(n), \quad n\in\mathbb{Z}, $$ and $T_\tau$ is the shift by $\tau\in\mathbb{R}$ of the function $f$, $$ (T_\tau f)(z):=f(z+\tau), \quad z\in\mathbb{C}. $$
format Article
id doaj-art-69d03aa11c04471e8ac38724e91845bc
institution Kabale University
issn 1027-4634
2411-0620
language deu
publishDate 2024-09-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-69d03aa11c04471e8ac38724e91845bc2025-08-20T03:33:17ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342411-06202024-09-0162110911210.30970/ms.62.1.109-112542Some inequalities for entire functionsN. Sushchyk0D. Lukivska1Ivan Franko National University of Lviv Lviv, UkraineIvan Franko National University of Lviv Lviv, UkraineLet $\mathcal{L}_p$ be the subspace of the space $L_p(\mathbb{R})$ consisting of the restriction to the real axis of all entire functions of exponential type $\le \pi$. In this paper, for any function $f\in \mathcal{L}_p \,\,(1\le p\le \infty)$, we obtain estimates for the norm of $f$ in terms of the sequence $(f(n/2))_{n\in\mathbb{Z}},$ namely $$ \frac12 \|f\|_{p,1}\le \|f\|_{\mathcal{L}_p}\le 2 \|f\|_{p,1}, $$ where $\|f\|_{p,1}:=\frac12(\|Jf\|_{\ell_p(\mathbb{Z})} +\|JT_{1/2}f\|_{\ell_p(\mathbb{Z})})$. Here $J:\mathcal{L}_p\to\ell_p(\mathbb{Z})$ is the linear operator given by the formula $$ (Jf)(n):=(-1)^nf(n), \quad n\in\mathbb{Z}, $$ and $T_\tau$ is the shift by $\tau\in\mathbb{R}$ of the function $f$, $$ (T_\tau f)(z):=f(z+\tau), \quad z\in\mathbb{C}. $$http://matstud.org.ua/ojs/index.php/matstud/article/view/542entire functionsbanach spaces
spellingShingle N. Sushchyk
D. Lukivska
Some inequalities for entire functions
Математичні Студії
entire functions
banach spaces
title Some inequalities for entire functions
title_full Some inequalities for entire functions
title_fullStr Some inequalities for entire functions
title_full_unstemmed Some inequalities for entire functions
title_short Some inequalities for entire functions
title_sort some inequalities for entire functions
topic entire functions
banach spaces
url http://matstud.org.ua/ojs/index.php/matstud/article/view/542
work_keys_str_mv AT nsushchyk someinequalitiesforentirefunctions
AT dlukivska someinequalitiesforentirefunctions