A Structural Pounding Formulation Using Systematic Modal Truncation

The evaluation of the response function of the structural pounding problem is generally time-consuming if high-order systems are applied. The well-known modal truncation strategy is outstandingly efficient for a single linear ground-accelerated structure. However, for the analysis of the structural...

Full description

Saved in:
Bibliographic Details
Main Authors: Jianye Shi, Franz Bamer, Bernd Markert
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2018/6378085
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The evaluation of the response function of the structural pounding problem is generally time-consuming if high-order systems are applied. The well-known modal truncation strategy is outstandingly efficient for a single linear ground-accelerated structure. However, for the analysis of the structural pounding problem, the classical modal truncation technique turns out to be ineffective as additional higher frequency motion due to possible contact impact occurs. This makes the determination of how many modes should be taken into account in order to obtain a required level of accuracy more difficult. Therefore, in this paper, a systematically controlled modal truncation strategy adapted to the seismic pounding formulation under consideration of high nonlinearity and nonsmoothness of contact problems is introduced. A comparative study of the classical and the controlled modal truncation technique is presented and a comparison with the commercial software package ABAQUS© is provided. It is shown that the computational accuracy is significantly improved when applying the new systematically controlled modal truncation strategy.
ISSN:1070-9622
1875-9203