Collaborative Static-Dynamic Teaching: A Semi-Supervised Framework for Stripe-like Space Target Detection

Stripe-like space target detection (SSTD) plays a crucial role in advancing space situational awareness, enabling missions like satellite navigation and debris monitoring. Existing unsupervised methods often falter in low signal-to-noise ratio (SNR) conditions, while fully supervised approaches requ...

Full description

Saved in:
Bibliographic Details
Main Authors: Zijian Zhu, Ali Zia, Xuesong Li, Bingbing Dan, Yuebo Ma, Hongfeng Long, Kaili Lu, Enhai Liu, Rujin Zhao
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/8/1341
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stripe-like space target detection (SSTD) plays a crucial role in advancing space situational awareness, enabling missions like satellite navigation and debris monitoring. Existing unsupervised methods often falter in low signal-to-noise ratio (SNR) conditions, while fully supervised approaches require extensive and labor-intensive pixel-level annotations. To address these limitations, this paper introduces MRSA-Net, a novel encoder-decoder network specifically designed for SSTD. MRSA-Net incorporates multi-receptive field processing and multi-level feature fusion to effectively extract features of variable and low-SNR stripe-like targets. Building upon this, we propose the Collaborative Static-Dynamic Teaching (CSDT) architecture, a semi-supervised learning architecture that reduces reliance on labeled data by leveraging both static and dynamic teacher models. The framework uses the straight-line prior of stripe-like targets to customize linearity and presents an innovative Adaptive Pseudo-Labeling (APL) strategy, dynamically selecting high-quality pseudo-labels to enhance the student model’s learning process. Extensive experiments on AstroStripeSet and other real-world datasets demonstrate that the CSDT framework achieves state-of-the-art performance in SSTD. Using just 1/16 of the labeled data, CSDT outperforms the second-best Interactive Self-Training Mean Teacher (ISMT) method by 2.64% in mean Intersection over Union (mIoU) and 4.5% in detection rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mi>d</mi></msub></semantics></math></inline-formula>), while exhibiting strong generalization in unseen scenarios. This work marks the first application of semi-supervised learning techniques to SSTD, offering a flexible and scalable solution for challenging space imaging tasks.
ISSN:2072-4292