Dynamic Collaborative Optimization Method for Real-Time Multi-Object Tracking

Multi-object tracking still faces significant challenges in complex conditions such as dense scenes, occlusion environments, and non-linear motion, especially regarding the detection and identity maintenance of small objects. To tackle these issues, this paper proposes a multi-modal fusion tracking...

Full description

Saved in:
Bibliographic Details
Main Authors: Ziqi Li, Dongyao Jia, Zihao He, Nengkai Wu
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/9/5119
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multi-object tracking still faces significant challenges in complex conditions such as dense scenes, occlusion environments, and non-linear motion, especially regarding the detection and identity maintenance of small objects. To tackle these issues, this paper proposes a multi-modal fusion tracking framework that realizes high-precision tracking in complex scenarios by collaboratively optimizing feature enhancement and motion prediction. Firstly, a multi-scale feature adaptive enhancement (MS-FAE) module is designed, integrating multi-level features and introducing a small object adaptive attention mechanism to enhance the representation ability for small objects. Secondly, a cross-frame feature association module (CFAM) is put forward, constructing a global semantic association network via grouped cross-attention and a memory recall mechanism to solve the matching difficulties in occlusion and dense scenes. Thirdly, a Dynamic Motion Model (DMM) is developed, enabling the robust prediction of non-linear motion based on an improved Kalman filter framework. Finally, a Bi-modal dynamic decision method (BDDM) is devised to fuse appearance and motion information for hierarchical decision making. Experiments conducted on multiple public datasets, including MOT17, MOT20, and VisDrone-MOT, demonstrate that this method remarkably improves tracking accuracy while maintaining real-time performance. On the MOT17 test set, it achieves 63.7% in HOTA, 61.4 FPS in processing speed, and 79.4% in IDF1, outperforming current state-of-the-art tracking algorithms.
ISSN:2076-3417