Quantifying Impact of HIV Receptor Surface Density Reveals Differences in Fusion Dynamics of HIV Strains

Human Immunodeficiency Virus (HIV) Type-1 has been studied heavily for decades, yet one area that is still poorly understood is the virus’ ability to cause cell–cell fusion. In HIV, the fusion process is mediated by viral surface glycoproteins that bind to CD4 cell receptors. This virus-mediated cel...

Full description

Saved in:
Bibliographic Details
Main Authors: Anthony Gerg, Hana M. Dobrovolny
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Viruses
Subjects:
Online Access:https://www.mdpi.com/1999-4915/17/4/583
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human Immunodeficiency Virus (HIV) Type-1 has been studied heavily for decades, yet one area that is still poorly understood is the virus’ ability to cause cell–cell fusion. In HIV, the fusion process is mediated by viral surface glycoproteins that bind to CD4 cell receptors. This virus-mediated cell fusion creates multi-nucleated cells called syncytia that can affect infection dynamics. Syncytia formation is often studied using a cell–cell fusion assay, in which donor cells expressing the viral surface protein fuse with acceptor cells expressing the cell receptor. A mathematical model capable of reproducing the dynamics of the cell–cell fusion assay was recently developed and can be used to quantify changes in syncytia formation. In this study, we use this mathematical model to quantify the changes in syncytia formation in HIV as the surface density of the glycoproteins is varied. We find that we need to modify the model to explicitly include a density-dependent syncytia formation rate that allows us to capture the dynamics of the cell–cell fusion assay as the density of the glycoproteins changes. With this modification, we find that cell–cell fusion of the HXB2 strain, which uses the CXCR4 coreceptor, shows a threshold-like behavior, while cell–cell fusion of the Sf162 strain, which uses the CCR5 co-receptor, shows a more gradual change as surface density decreases.
ISSN:1999-4915