RSSI and LQI Data Clustering Techniques to Determine the Number of Nodes in Wireless Sensor Networks

With the rapid proliferation of wireless sensor networks, different network topologies are likely to exist in the same geographical region, each of which is able to perform its own functions individually. However, these networks are prone to cause interference to neighbor networks, such as data dupl...

Full description

Saved in:
Bibliographic Details
Main Authors: Yanwen Wang, Ivan G. Guardiola, Xiaoling Wu
Format: Article
Language:English
Published: Wiley 2014-05-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1155/2014/380526
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the rapid proliferation of wireless sensor networks, different network topologies are likely to exist in the same geographical region, each of which is able to perform its own functions individually. However, these networks are prone to cause interference to neighbor networks, such as data duplication or interception. How to detect, determine, and locate the unknown wireless topologies in a given geographical area has become a significant issue in the wireless industry. This problem is especially acute in military use, such as spy-nodes detection and communication orientation systems. In this paper, three different clustering methods are applied to classify the RSSI and LQI data recorded from the unknown wireless topology into a certain number of groups in order to determine the number of active sensor nodes in the unknown wireless topology. The results show that RSSI and LQI data are capable of determining the number of active communication nodes in wireless topologies.
ISSN:1550-1477