Nuclear pore complex dysfunction drives TDP-43 pathology in ALS

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron degeneration and pathological aggregation of TDP-43. While protein misfolding and impaired autophagy are established features, accumulating evidence highlights the nuclear pore complex...

Full description

Saved in:
Bibliographic Details
Main Authors: O. Ramírez-Núñez, S. Rico-Ríos, P. Torres, V. Ayala, A. Fernàndez-Bernal, M. Ceron-Codorniu, P. Andrés-Benito, A. Vinyals, S. Maqsood, I. Ferrer, R. Pamplona, M. Portero-Otin
Format: Article
Language:English
Published: Elsevier 2025-10-01
Series:Redox Biology
Online Access:http://www.sciencedirect.com/science/article/pii/S2213231725003374
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849339562749329408
author O. Ramírez-Núñez
S. Rico-Ríos
P. Torres
V. Ayala
A. Fernàndez-Bernal
M. Ceron-Codorniu
P. Andrés-Benito
A. Vinyals
S. Maqsood
I. Ferrer
R. Pamplona
M. Portero-Otin
author_facet O. Ramírez-Núñez
S. Rico-Ríos
P. Torres
V. Ayala
A. Fernàndez-Bernal
M. Ceron-Codorniu
P. Andrés-Benito
A. Vinyals
S. Maqsood
I. Ferrer
R. Pamplona
M. Portero-Otin
author_sort O. Ramírez-Núñez
collection DOAJ
description Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron degeneration and pathological aggregation of TDP-43. While protein misfolding and impaired autophagy are established features, accumulating evidence highlights the nuclear pore complex (NPC)as a vulnerable, redox-sensitive hub in ALS pathogenesis. Here, we show that selective loss of NPC components, particularly the scaffold proteins NUP107 and NUP93, and FG-repeat-containing components—is a consistent finding across ALS postmortem spinal cord, SOD1^G93A and TDP-43 mutant mouse models, and human cell systems.CRISPR-mediated depletion of NUP107 in human cells triggers hallmark features of ALS pathology, including cytoplasmic TDP-43 mislocalization, increased phosphorylation, and autophagy dysfunction. Conversely, TDP-43 knockdown perturbs NPC composition, suggesting a reciprocal regulatory loop. Crucially, we demonstrate that oxidative stress exacerbated NPC subunit mislocalization and enhanced TDP-43 aggregation. Using oxime blotting and DNPH assays, we show that FG-repeat subunits of NPC were direct targets of redox-driven carbonylation, indicating that oxidative modifications compromise NPC integrity thuspotentially affecting nucleocytoplasmic transport. Our findings established NPC dysfunction as a redox-sensitive driver of TDP-43 pathology in ALS and highlight nucleocytoplasmic transport as a promising therapeutic axis. The susceptibility of long-lived NPC proteins to oxidative damage provides a mechanistic link between redox stress, proteostasis collapse, and neurodegeneration.
format Article
id doaj-art-690ce178fa8547b98f88280fc4a230be
institution Kabale University
issn 2213-2317
language English
publishDate 2025-10-01
publisher Elsevier
record_format Article
series Redox Biology
spelling doaj-art-690ce178fa8547b98f88280fc4a230be2025-08-20T03:44:06ZengElsevierRedox Biology2213-23172025-10-018610382410.1016/j.redox.2025.103824Nuclear pore complex dysfunction drives TDP-43 pathology in ALSO. Ramírez-Núñez0S. Rico-Ríos1P. Torres2V. Ayala3A. Fernàndez-Bernal4M. Ceron-Codorniu5P. Andrés-Benito6A. Vinyals7S. Maqsood8I. Ferrer9R. Pamplona10M. Portero-Otin11Metabolic Pathophysiology Research Group, Dept of Experimental Medicine, University of Lleida-IRBLleida, Avda Rovira Roure, 80 E25196, Lleida, Spain; Corresponding author.Metabolic Pathophysiology Research Group, Dept of Experimental Medicine, University of Lleida-IRBLleida, Avda Rovira Roure, 80 E25196, Lleida, SpainMetabolic Pathophysiology Research Group, Dept of Experimental Medicine, University of Lleida-IRBLleida, Avda Rovira Roure, 80 E25196, Lleida, SpainMetabolic Pathophysiology Research Group, Dept of Experimental Medicine, University of Lleida-IRBLleida, Avda Rovira Roure, 80 E25196, Lleida, SpainMetabolic Pathophysiology Research Group, Dept of Experimental Medicine, University of Lleida-IRBLleida, Avda Rovira Roure, 80 E25196, Lleida, SpainMetabolic Pathophysiology Research Group, Dept of Experimental Medicine, University of Lleida-IRBLleida, Avda Rovira Roure, 80 E25196, Lleida, SpainCognition and Behaviour Research Group, IRBLleida, Avda Rovira Roure, 80, Lleida, E-25196, Spain; Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, L'Hospitalet de Llobregat, 08907, Barcelona, SpainNeurology and Neurogenetics Group - Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907, Barcelona, SpainMetabolic Pathophysiology Research Group, Dept of Experimental Medicine, University of Lleida-IRBLleida, Avda Rovira Roure, 80 E25196, Lleida, SpainDepartment of Pathology and Experimental Therapeutics, University of Barcelona, Gran Via de l'Hospitalet, 199 L'Hospitalet de Llobregat, Barcelona, 08908, Spain; Reial Academia de Medicina de Catalunya, Barcelona, SpainMetabolic Pathophysiology Research Group, Dept of Experimental Medicine, University of Lleida-IRBLleida, Avda Rovira Roure, 80 E25196, Lleida, SpainMetabolic Pathophysiology Research Group, Dept of Experimental Medicine, University of Lleida-IRBLleida, Avda Rovira Roure, 80 E25196, Lleida, Spain; Corresponding author.Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron degeneration and pathological aggregation of TDP-43. While protein misfolding and impaired autophagy are established features, accumulating evidence highlights the nuclear pore complex (NPC)as a vulnerable, redox-sensitive hub in ALS pathogenesis. Here, we show that selective loss of NPC components, particularly the scaffold proteins NUP107 and NUP93, and FG-repeat-containing components—is a consistent finding across ALS postmortem spinal cord, SOD1^G93A and TDP-43 mutant mouse models, and human cell systems.CRISPR-mediated depletion of NUP107 in human cells triggers hallmark features of ALS pathology, including cytoplasmic TDP-43 mislocalization, increased phosphorylation, and autophagy dysfunction. Conversely, TDP-43 knockdown perturbs NPC composition, suggesting a reciprocal regulatory loop. Crucially, we demonstrate that oxidative stress exacerbated NPC subunit mislocalization and enhanced TDP-43 aggregation. Using oxime blotting and DNPH assays, we show that FG-repeat subunits of NPC were direct targets of redox-driven carbonylation, indicating that oxidative modifications compromise NPC integrity thuspotentially affecting nucleocytoplasmic transport. Our findings established NPC dysfunction as a redox-sensitive driver of TDP-43 pathology in ALS and highlight nucleocytoplasmic transport as a promising therapeutic axis. The susceptibility of long-lived NPC proteins to oxidative damage provides a mechanistic link between redox stress, proteostasis collapse, and neurodegeneration.http://www.sciencedirect.com/science/article/pii/S2213231725003374
spellingShingle O. Ramírez-Núñez
S. Rico-Ríos
P. Torres
V. Ayala
A. Fernàndez-Bernal
M. Ceron-Codorniu
P. Andrés-Benito
A. Vinyals
S. Maqsood
I. Ferrer
R. Pamplona
M. Portero-Otin
Nuclear pore complex dysfunction drives TDP-43 pathology in ALS
Redox Biology
title Nuclear pore complex dysfunction drives TDP-43 pathology in ALS
title_full Nuclear pore complex dysfunction drives TDP-43 pathology in ALS
title_fullStr Nuclear pore complex dysfunction drives TDP-43 pathology in ALS
title_full_unstemmed Nuclear pore complex dysfunction drives TDP-43 pathology in ALS
title_short Nuclear pore complex dysfunction drives TDP-43 pathology in ALS
title_sort nuclear pore complex dysfunction drives tdp 43 pathology in als
url http://www.sciencedirect.com/science/article/pii/S2213231725003374
work_keys_str_mv AT oramireznunez nuclearporecomplexdysfunctiondrivestdp43pathologyinals
AT sricorios nuclearporecomplexdysfunctiondrivestdp43pathologyinals
AT ptorres nuclearporecomplexdysfunctiondrivestdp43pathologyinals
AT vayala nuclearporecomplexdysfunctiondrivestdp43pathologyinals
AT afernandezbernal nuclearporecomplexdysfunctiondrivestdp43pathologyinals
AT mceroncodorniu nuclearporecomplexdysfunctiondrivestdp43pathologyinals
AT pandresbenito nuclearporecomplexdysfunctiondrivestdp43pathologyinals
AT avinyals nuclearporecomplexdysfunctiondrivestdp43pathologyinals
AT smaqsood nuclearporecomplexdysfunctiondrivestdp43pathologyinals
AT iferrer nuclearporecomplexdysfunctiondrivestdp43pathologyinals
AT rpamplona nuclearporecomplexdysfunctiondrivestdp43pathologyinals
AT mporterootin nuclearporecomplexdysfunctiondrivestdp43pathologyinals