On commutativity theorems for rings
Let R be an associative ring with unity. It is proved that if R satisfies the polynomial identity [xny−ymxn,x]=0(m>1,n≥1), then R is commutative. Two or more related results are also obtained.
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
1990-01-01
|
| Series: | International Journal of Mathematics and Mathematical Sciences |
| Subjects: | |
| Online Access: | http://dx.doi.org/10.1155/S0161171290000126 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Let R be an associative ring with unity. It is proved that if R satisfies the polynomial identity [xny−ymxn,x]=0(m>1,n≥1), then R is commutative. Two or more related results are also obtained. |
|---|---|
| ISSN: | 0161-1712 1687-0425 |