On the Application of a Sparse Data Observers (SDOs) Outlier Detection Algorithm to Mitigate Poisoning Attacks in UltraWideBand (UWB) Line-of-Sight (LOS)/Non-Line-of-Sight (NLOS) Classification

The classification of the wireless propagation channel between Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) is useful in the operation of wireless communication systems. The research community has increasingly investigated the application of machine learning (ML) to LOS/NLOS classification and th...

Full description

Saved in:
Bibliographic Details
Main Author: Gianmarco Baldini
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Future Internet
Subjects:
Online Access:https://www.mdpi.com/1999-5903/17/2/60
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849719216602611712
author Gianmarco Baldini
author_facet Gianmarco Baldini
author_sort Gianmarco Baldini
collection DOAJ
description The classification of the wireless propagation channel between Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) is useful in the operation of wireless communication systems. The research community has increasingly investigated the application of machine learning (ML) to LOS/NLOS classification and this paper is part of this trend, but not all the different aspects of ML have been analyzed. In the general ML domain, poisoning and adversarial attacks and the related mitigation techniques are an active area of research. Such attacks aim to hamper the ML classification process by poisoning the data set. Mitigation techniques are designed to counter this threat using different approaches. Poisoning attacks in LOS/NLOS classification have not received significant attention by the wireless communication community and this paper aims to address this gap by proposing the application of a specific mitigation technique based on outlier detection algorithms. The rationale is that poisoned samples can be identified as outliers from legitimate samples. In particular, the study described in this paper proposes a recent outlier detection algorithm, which has low computing complexity: the sparse data observers (SDOs) algorithm. The study proposes a comprehensive analysis of both conventional and novel types of attacks and related mitigation techniques based on outlier detection algorithms for UltraWideBand (UWB) channel classification. The proposed techniques are applied to two data sets: the public eWINE data set with seven different UWB LOS/NLOS different environments and a radar data set with the LOS/NLOS condition. The results show that the SDO algorithm outperforms other outlier detection algorithms for attack detection like the isolation forest (iForest) algorithm and the one-class support vector machine (OCSVM) in most of the scenarios and attacks, and it is quite competitive in the task of increasing the UWB LOS/NLOS classification accuracy through sanitation in comparison to the poisoned model.
format Article
id doaj-art-68f5111d40e143efb67d7db634fbd9ac
institution DOAJ
issn 1999-5903
language English
publishDate 2025-02-01
publisher MDPI AG
record_format Article
series Future Internet
spelling doaj-art-68f5111d40e143efb67d7db634fbd9ac2025-08-20T03:12:11ZengMDPI AGFuture Internet1999-59032025-02-011726010.3390/fi17020060On the Application of a Sparse Data Observers (SDOs) Outlier Detection Algorithm to Mitigate Poisoning Attacks in UltraWideBand (UWB) Line-of-Sight (LOS)/Non-Line-of-Sight (NLOS) ClassificationGianmarco Baldini0European Commission, Joint Research Centre, 21027 Ispra, ItalyThe classification of the wireless propagation channel between Line-of-Sight (LOS) or Non-Line-of-Sight (NLOS) is useful in the operation of wireless communication systems. The research community has increasingly investigated the application of machine learning (ML) to LOS/NLOS classification and this paper is part of this trend, but not all the different aspects of ML have been analyzed. In the general ML domain, poisoning and adversarial attacks and the related mitigation techniques are an active area of research. Such attacks aim to hamper the ML classification process by poisoning the data set. Mitigation techniques are designed to counter this threat using different approaches. Poisoning attacks in LOS/NLOS classification have not received significant attention by the wireless communication community and this paper aims to address this gap by proposing the application of a specific mitigation technique based on outlier detection algorithms. The rationale is that poisoned samples can be identified as outliers from legitimate samples. In particular, the study described in this paper proposes a recent outlier detection algorithm, which has low computing complexity: the sparse data observers (SDOs) algorithm. The study proposes a comprehensive analysis of both conventional and novel types of attacks and related mitigation techniques based on outlier detection algorithms for UltraWideBand (UWB) channel classification. The proposed techniques are applied to two data sets: the public eWINE data set with seven different UWB LOS/NLOS different environments and a radar data set with the LOS/NLOS condition. The results show that the SDO algorithm outperforms other outlier detection algorithms for attack detection like the isolation forest (iForest) algorithm and the one-class support vector machine (OCSVM) in most of the scenarios and attacks, and it is quite competitive in the task of increasing the UWB LOS/NLOS classification accuracy through sanitation in comparison to the poisoned model.https://www.mdpi.com/1999-5903/17/2/60securitywireless communicationdeep learningmachine learning
spellingShingle Gianmarco Baldini
On the Application of a Sparse Data Observers (SDOs) Outlier Detection Algorithm to Mitigate Poisoning Attacks in UltraWideBand (UWB) Line-of-Sight (LOS)/Non-Line-of-Sight (NLOS) Classification
Future Internet
security
wireless communication
deep learning
machine learning
title On the Application of a Sparse Data Observers (SDOs) Outlier Detection Algorithm to Mitigate Poisoning Attacks in UltraWideBand (UWB) Line-of-Sight (LOS)/Non-Line-of-Sight (NLOS) Classification
title_full On the Application of a Sparse Data Observers (SDOs) Outlier Detection Algorithm to Mitigate Poisoning Attacks in UltraWideBand (UWB) Line-of-Sight (LOS)/Non-Line-of-Sight (NLOS) Classification
title_fullStr On the Application of a Sparse Data Observers (SDOs) Outlier Detection Algorithm to Mitigate Poisoning Attacks in UltraWideBand (UWB) Line-of-Sight (LOS)/Non-Line-of-Sight (NLOS) Classification
title_full_unstemmed On the Application of a Sparse Data Observers (SDOs) Outlier Detection Algorithm to Mitigate Poisoning Attacks in UltraWideBand (UWB) Line-of-Sight (LOS)/Non-Line-of-Sight (NLOS) Classification
title_short On the Application of a Sparse Data Observers (SDOs) Outlier Detection Algorithm to Mitigate Poisoning Attacks in UltraWideBand (UWB) Line-of-Sight (LOS)/Non-Line-of-Sight (NLOS) Classification
title_sort on the application of a sparse data observers sdos outlier detection algorithm to mitigate poisoning attacks in ultrawideband uwb line of sight los non line of sight nlos classification
topic security
wireless communication
deep learning
machine learning
url https://www.mdpi.com/1999-5903/17/2/60
work_keys_str_mv AT gianmarcobaldini ontheapplicationofasparsedataobserverssdosoutlierdetectionalgorithmtomitigatepoisoningattacksinultrawidebanduwblineofsightlosnonlineofsightnlosclassification