$\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space

Thanks to a finite element method, we solve numerically parabolic partial differential equations on complex domains by avoiding the mesh generation, using a regular background mesh, not fitting the domain and its real boundary exactly. Our technique follows the $\phi $-FEM paradigm, which supposes t...

Full description

Saved in:
Bibliographic Details
Main Authors: Duprez, Michel, Lleras, Vanessa, Lozinski, Alexei, Vuillemot, Killian
Format: Article
Language:English
Published: Académie des sciences 2023-12-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.497/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206235817836544
author Duprez, Michel
Lleras, Vanessa
Lozinski, Alexei
Vuillemot, Killian
author_facet Duprez, Michel
Lleras, Vanessa
Lozinski, Alexei
Vuillemot, Killian
author_sort Duprez, Michel
collection DOAJ
description Thanks to a finite element method, we solve numerically parabolic partial differential equations on complex domains by avoiding the mesh generation, using a regular background mesh, not fitting the domain and its real boundary exactly. Our technique follows the $\phi $-FEM paradigm, which supposes that the domain is given by a level-set function. In this paper, we prove a priori error estimates in $l^2(H^1)$ and $l^\infty (L^2)$ norms for an implicit Euler discretization in time. We give numerical illustrations to highlight the performances of $\phi $-FEM, which combines optimal convergence accuracy, easy implementation process and fastness.
format Article
id doaj-art-68ef8131cf4644338b5a95915c8cfddb
institution Kabale University
issn 1778-3569
language English
publishDate 2023-12-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-68ef8131cf4644338b5a95915c8cfddb2025-02-07T11:12:14ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-12-01361G111699171010.5802/crmath.49710.5802/crmath.497$\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in spaceDuprez, Michel0https://orcid.org/0000-0002-2059-2811Lleras, Vanessa1https://orcid.org/0000-0003-1358-9558Lozinski, Alexei2https://orcid.org/0000-0003-0745-0365Vuillemot, Killian3MIMESIS team, Inria Nancy - Grand Est, MLMS team, Université de Strasbourg, 1 place de l’hôpital, 67000 Strasbourg, FranceIMAG, Univ Montpellier, CNRS UMR 5149, 499-554 Rue du Truel, 34090 Montpellier, FranceUniversité de Franche-Comté, Laboratoire de mathématiques de Besançon, UMR CNRS 6623, 16 route de Gray, 25030 Besançon Cedex, FranceIMAG, Univ Montpellier, CNRS UMR 5149, 499-554 Rue du Truel, 34090 Montpellier, France; MIMESIS team, Inria Nancy - Grand Est, MLMS team, Université de Strasbourg, 1 place de l’hôpital, 67000 Strasbourg, FranceThanks to a finite element method, we solve numerically parabolic partial differential equations on complex domains by avoiding the mesh generation, using a regular background mesh, not fitting the domain and its real boundary exactly. Our technique follows the $\phi $-FEM paradigm, which supposes that the domain is given by a level-set function. In this paper, we prove a priori error estimates in $l^2(H^1)$ and $l^\infty (L^2)$ norms for an implicit Euler discretization in time. We give numerical illustrations to highlight the performances of $\phi $-FEM, which combines optimal convergence accuracy, easy implementation process and fastness.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.497/
spellingShingle Duprez, Michel
Lleras, Vanessa
Lozinski, Alexei
Vuillemot, Killian
$\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space
Comptes Rendus. Mathématique
title $\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space
title_full $\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space
title_fullStr $\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space
title_full_unstemmed $\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space
title_short $\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space
title_sort phi fem for the heat equation optimal convergence on unfitted meshes in space
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.497/
work_keys_str_mv AT duprezmichel phifemfortheheatequationoptimalconvergenceonunfittedmeshesinspace
AT llerasvanessa phifemfortheheatequationoptimalconvergenceonunfittedmeshesinspace
AT lozinskialexei phifemfortheheatequationoptimalconvergenceonunfittedmeshesinspace
AT vuillemotkillian phifemfortheheatequationoptimalconvergenceonunfittedmeshesinspace