Innovative X-Ray Absorption Technology for Improved Monitoring of the Degradation and Oxidation of Granular Activated Carbon Filters Used in Hospital Water Treatment Systems
This study introduces a novel, non-invasive X-ray absorption analysis (XRA) method to evaluate the photonic absorption process of granular activated carbon (GAC) in hospital water purification systems. By leveraging digital radiographic images, this innovative technique monitors the deterioration an...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | C |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2311-5629/11/2/30 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study introduces a novel, non-invasive X-ray absorption analysis (XRA) method to evaluate the photonic absorption process of granular activated carbon (GAC) in hospital water purification systems. By leveraging digital radiographic images, this innovative technique monitors the deterioration and oxidation of the GAC filter, predicts its remaining lifetime, and estimates its water dechlorinating capacity. Analyzing the entire GAC filter and making a reuse possible, the new XRA method provides valuable insights into the filter’s condition, enhancing water purification efficiency and costs without analyzing subsamples. Complementary analytical techniques on subsamples, taken at various depths, did not yield valuable additional information of the GAC filter exhaustion condition, nor additionally make a reuse impossible. |
|---|---|
| ISSN: | 2311-5629 |