Simultaneous strength optimization and recrystallization prevention in induction-heating-assisted laser additively manufactured Ni-based superalloys
Induction heating favors crack inhibition for laser additive manufacturing of Ni-based superalloys but may negatively influence columnar grain growth and mechanical properties. Here, by induction heating at a proper temperature during laser additive manufacturing, superalloys with a directionally so...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Taylor & Francis Group
2025-06-01
|
| Series: | Materials Research Letters |
| Subjects: | |
| Online Access: | https://www.tandfonline.com/doi/10.1080/21663831.2025.2491566 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Induction heating favors crack inhibition for laser additive manufacturing of Ni-based superalloys but may negatively influence columnar grain growth and mechanical properties. Here, by induction heating at a proper temperature during laser additive manufacturing, superalloys with a directionally solidified grain structure are obtained. Optimized γ′-precipitate size grants them higher microhardness than their counterparts either cast or additively manufactured without concurrent induction heating. Furthermore, lowered built-in dislocation density reduces the driving force for recrystallization. The combination of a maintained columnar grain structure, an increased microhardness, and a decreased risk of recrystallization offers a valuable pathway for advancing additive manufacturing of superalloys. |
|---|---|
| ISSN: | 2166-3831 |