PCI-24781, a Novel Hydroxamic Acid HDAC Inhibitor, Exerts Cytotoxicity and Histone Alterations via Caspase-8 and FADD in Leukemia Cells
Histone deacetylase inhibitors (HDACi) have become a promising new avenue for cancer therapy, and many are currently in Phase I/II clinical trials for various tumor types. In the present study, we show that apoptosis induction and histone alterations by PCI-24781, a novel hydroxamic acid-based HDAC...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2010-01-01
|
| Series: | International Journal of Cell Biology |
| Online Access: | http://dx.doi.org/10.1155/2010/207420 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Histone deacetylase inhibitors (HDACi) have become a promising new avenue for cancer therapy, and many are currently in Phase I/II clinical trials for various tumor types. In the present study, we show that apoptosis induction and histone alterations by PCI-24781, a novel hydroxamic acid-based HDAC inhibitor, require caspase-8 and the adaptor molecule, Fas-associated death domain (FADD), in acute leukemia cells. PCI-24781 treatment also causes an increase in superoxide levels, which has been reported for other HDACi. However, an antioxidant does not reverse histone alterations caused by PCI-24781, indicating that ROS generation is likely downstream of the effects that PCI-24781 exerts on histone H3. Taken together, these results provide insight into the mechanism of apoptosis induction by PCI-24781 in leukemia by highlighting the roles of caspase-8, FADD and increased superoxide levels. |
|---|---|
| ISSN: | 1687-8876 1687-8884 |