Simulation of Transient Nonlinear Friction-Induced Vibrations Using Complex Interface Modes: Application to the Prediction of Squeal Events
During the past decades, the problem of friction-induced vibration and noise has been the subject of a huge amount of works. Various numerical simulations with finite elements models have been largely investigated to predict squeal events. Although a nonlinear analysis is more predictive than Comple...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2017-01-01
|
| Series: | Shock and Vibration |
| Online Access: | http://dx.doi.org/10.1155/2017/6107251 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850221633781891072 |
|---|---|
| author | J.-J. Sinou S. Besset |
| author_facet | J.-J. Sinou S. Besset |
| author_sort | J.-J. Sinou |
| collection | DOAJ |
| description | During the past decades, the problem of friction-induced vibration and noise has been the subject of a huge amount of works. Various numerical simulations with finite elements models have been largely investigated to predict squeal events. Although a nonlinear analysis is more predictive than Complex Eigenvalues Analysis, one of the main drawbacks of the time analysis is the need of large computational efforts. In view of the complexity of the subject, this approach appears still computationally too expensive to be used in industry for finite element models. In this study, the potential of a new reduced model based on a double modal synthesis (i.e., a classical modal reduction via Craig and Bampton plus a condensation at the frictional interface based on complex modes) for the prediction of self-excited vibrations of brake squeal is discussed. The effectiveness of the proposed modal reduction is tested on a finite element model of a simplified brake system. It will be shown that numerical results of times analysis by applying the proposed reduction correlate well with those of the nonlinear analysis based on a reference model, hence demonstrating the potential of using adapted modal reductions to predict the squeal propensity and to estimate self-excited vibrations and noise. |
| format | Article |
| id | doaj-art-68490a430f3b4bf8bf268d9f76aa0fb0 |
| institution | OA Journals |
| issn | 1070-9622 1875-9203 |
| language | English |
| publishDate | 2017-01-01 |
| publisher | Wiley |
| record_format | Article |
| series | Shock and Vibration |
| spelling | doaj-art-68490a430f3b4bf8bf268d9f76aa0fb02025-08-20T02:06:40ZengWileyShock and Vibration1070-96221875-92032017-01-01201710.1155/2017/61072516107251Simulation of Transient Nonlinear Friction-Induced Vibrations Using Complex Interface Modes: Application to the Prediction of Squeal EventsJ.-J. Sinou0S. Besset1Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, École Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Écully Cedex, FranceLaboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, École Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Écully Cedex, FranceDuring the past decades, the problem of friction-induced vibration and noise has been the subject of a huge amount of works. Various numerical simulations with finite elements models have been largely investigated to predict squeal events. Although a nonlinear analysis is more predictive than Complex Eigenvalues Analysis, one of the main drawbacks of the time analysis is the need of large computational efforts. In view of the complexity of the subject, this approach appears still computationally too expensive to be used in industry for finite element models. In this study, the potential of a new reduced model based on a double modal synthesis (i.e., a classical modal reduction via Craig and Bampton plus a condensation at the frictional interface based on complex modes) for the prediction of self-excited vibrations of brake squeal is discussed. The effectiveness of the proposed modal reduction is tested on a finite element model of a simplified brake system. It will be shown that numerical results of times analysis by applying the proposed reduction correlate well with those of the nonlinear analysis based on a reference model, hence demonstrating the potential of using adapted modal reductions to predict the squeal propensity and to estimate self-excited vibrations and noise.http://dx.doi.org/10.1155/2017/6107251 |
| spellingShingle | J.-J. Sinou S. Besset Simulation of Transient Nonlinear Friction-Induced Vibrations Using Complex Interface Modes: Application to the Prediction of Squeal Events Shock and Vibration |
| title | Simulation of Transient Nonlinear Friction-Induced Vibrations Using Complex Interface Modes: Application to the Prediction of Squeal Events |
| title_full | Simulation of Transient Nonlinear Friction-Induced Vibrations Using Complex Interface Modes: Application to the Prediction of Squeal Events |
| title_fullStr | Simulation of Transient Nonlinear Friction-Induced Vibrations Using Complex Interface Modes: Application to the Prediction of Squeal Events |
| title_full_unstemmed | Simulation of Transient Nonlinear Friction-Induced Vibrations Using Complex Interface Modes: Application to the Prediction of Squeal Events |
| title_short | Simulation of Transient Nonlinear Friction-Induced Vibrations Using Complex Interface Modes: Application to the Prediction of Squeal Events |
| title_sort | simulation of transient nonlinear friction induced vibrations using complex interface modes application to the prediction of squeal events |
| url | http://dx.doi.org/10.1155/2017/6107251 |
| work_keys_str_mv | AT jjsinou simulationoftransientnonlinearfrictioninducedvibrationsusingcomplexinterfacemodesapplicationtothepredictionofsquealevents AT sbesset simulationoftransientnonlinearfrictioninducedvibrationsusingcomplexinterfacemodesapplicationtothepredictionofsquealevents |