Quantum Edge Detection

This paper introduces quantum edge detection, aimed at locating boundaries of quantum domains where all particles share the same pure state. Focusing on the 1D scenario of a string of particles, we develop an optimal protocol for quantum edge detection, efficiently computing its success probability...

Full description

Saved in:
Bibliographic Details
Main Authors: Santiago Llorens, Walther González, Gael Sentís, John Calsamiglia, Ramon Muñoz-Tapia, Emili Bagan
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2025-04-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2025-04-03-1687/pdf/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper introduces quantum edge detection, aimed at locating boundaries of quantum domains where all particles share the same pure state. Focusing on the 1D scenario of a string of particles, we develop an optimal protocol for quantum edge detection, efficiently computing its success probability through Schur-Weyl duality and semidefinite programming techniques. We analyze the behavior of the success probability as a function of the string length and local dimension, with emphasis in the limit of long strings. We present a protocol based on square root measurement, which proves asymptotically optimal. Additionally, we explore a mixed quantum change point detection scenario where the state of particles transitions from known to unknown, which may find practical applications in detecting malfunctions in quantum devices
ISSN:2521-327X