Combining machine learning algorithms for bridging gaps in GRACE and GRACE Follow-On missions using ERA5-Land reanalysis
The Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GFO) missions have provided valuable data for monitoring global terrestrial water storage anomalies (TWSA) over the past two decades. However, the nearly one-year gap between these missions pose challenges for long-term TWSA me...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-06-01
|
Series: | Science of Remote Sensing |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2666017225000045 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!