Numerical Simulation of Tornado-like Vortices Induced by Small-Scale Cyclostrophic Wind Perturbations
This study introduces a tornado perturbation model utilizing the cyclostrophic wind model, implemented through a shallow-water equation framework. Four numerical experiments were conducted: a single cyclonic wind perturbation (EXP1), a single low-geopotential height perturbation (EXP2), a cyclonic w...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Atmosphere |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4433/16/1/108 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study introduces a tornado perturbation model utilizing the cyclostrophic wind model, implemented through a shallow-water equation framework. Four numerical experiments were conducted: a single cyclonic wind perturbation (EXP1), a single low-geopotential height perturbation (EXP2), a cyclonic wind perturbation with a 0 Coriolis parameter (EXP3), and a single anticyclonic wind perturbation (EXP4). The outputs showed that in a static atmosphere setting, a small-scale cyclonic wind perturbation generated a tornado-like pressure structure. The centrifugal force in the central area exceeded the pressure gradient force, causing air particles to flow outward, leading to a pressure drop and strong pressure gradient. The effect of the Coriolis force is negligible for meso-γ-scale and smaller systems, while for meso-β-scale and larger systems, it begins to have a significant impact. The results indicate that a robust cyclonic and an anticyclonic wind field can potentially generate a pair of cyclonic and anticyclonic tornadoes when the horizontal vortex tubes in an atmosphere with strong vertical wind shear tilt, forming a pair of positive and negative vorticities. These tornadoes are similar but have different rotation directions. |
---|---|
ISSN: | 2073-4433 |